Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optogenetik – fusionierte Ionenkanäle als Lichtschalter

21.12.2011
Max-Planck-Forscher steuern Nervenzellen mithilfe zweier verbundener Membranproteine

Fliegen, die auf Knopfdruck balzen, Würmer, die ferngesteuert zappeln – seit Erfindung der Optogenetik können Wissenschaftler Nervenzellen per Lichtblitz ein- und ausschalten.


Molekularer Kombischalter: Zwei lichtempfindliche Membranproteine - hier rot und violett - sind über ein Zwischenstück (grün) in der Zellwand verankert (links). Blaues Licht lässt Natrium-Ionen, oranges Licht Chlorid-Ionen in die Zelle einströmen. Entsprechend wird die Zelle aktiviert oder deaktiviert (rechts). © Max-Planck-Institut für Biophysik

Ein Forscherteam des Max-Planck-Instituts für Biophysik in Frankfurt am Main hat nun einen molekularen Kombi-Lichtschalter entwickelt der es ermöglicht, Zellen noch präziser zu steuern als bisher. Der Schalter besteht aus zwei unterschiedlichen, lichtempfindlichen Membranproteinen, die als Ein- und Ausschalter dienen. Die Methode, mit der die Wissenschaftler die beiden Komponenten verknüpfen, eignet sich für unterschiedliche Proteinvarianten und ist deshalb vielseitig einsetzbar.

Ziel des noch jungen Forschungsgebiets der Optogenetik ist es, Zellen mithilfe von Licht zu kontrollieren. Dazu machen sich Forscher lichtempfindliche Proteine zunutze, die natürlicherweise in der Zellwand bestimmter Algen und Bakterien vorkommen. Um damit eine Nervenzelle zu steuern, schleusen sie Gene mit der Bauanleitung für solche Membranproteine ins Erbgut der Zelle ein. Je nachdem, welche Proteine die Wissenschaftler verwenden, können sie Zellen auf diese Weise mit Ein- und Ausschaltern ausstatten, die auf Licht unterschiedlicher Wellenlänge reagieren.

Für eine präzise Steuerung ist es dabei wichtig, dass sich die Zelle ebenso gut an- wie ausknipsen lässt. Genau hier lag bisher das Problem, denn werden die Gene separat eingeschleust, stellt die Zelle unterschiedlich viele Kopien der jeweiligen Proteine her. Dies führt dazu, dass ein Schaltertyp dominiert.

Eine Gruppe von Wissenschaftlern um Ernst Bamberg vom Max-Planck-Institut für Biophysik hat nun eine ebenso elegante wie vielseitige Lösung entwickelt: Die Forscher haben dazu die Gene für Ein- und Ausschaltprotein auf demselben Stück Erbsubstanz untergebracht, zusammen mit einem weiteren Gen, das die Montageanleitung für ein Verbindungsstück trägt. Dieses zwischengeschaltete Protein koppelt die Schalterproteine aneinander und verankert sie stabil in der Zellmembran. „Auf diese Weise können wir sicherstellen, dass Ein- und Ausschalter nebeneinander und immer im Verhältnis 1:1 in die Zellwand eingebaut werden. Das ermöglicht es uns, die Zelle präzise zu kontrollieren“, erklärt Ernst Bamberg.

Der Kombi-Lichtschalter, den die Forscher ausgetüftelt haben, besteht aus den beiden Membranproteinen Channelrhodopsin-2 und Halorhodopsin. Channelrhodopsin-2 stammt ursprünglich aus der einzelligen Grünalge Chlamydomonas reinhardtii. Das Protein reagiert auf blaues Licht, indem es die Zellwand für positiv geladene Ionen durchlässig macht. Durch den Ioneneinstrom wird ein Nervenimpuls ausgelöst, der die Zelle aktiviert. Halorhodopsin, das Wissenschaftler aus dem Bakterium Natromonas pharaonis isoliert haben, hat den gegenteiligen Effekt: Wird die Zelle mit orangem Licht bestrahlt, lässt es negativ geladene Ionen einströmen, was Nervenimpulse unterdrückt.

Da Channelrhodopsin-2 und Halorhodopsin auf Licht unterschiedlicher Wellenlänge reagieren, ist das Protein-Duo ein nützliches Werkzeug, um Zellen gezielt an- und auszuknipsen. Wie die Forscher gezeigt haben, eignet sich die Methode, mit der sie die beiden Moleküle verknüpfen, aber auch für andere Proteinvarianten: „Indem wir verschiedene Proteine je nach Bedarf miteinander koppeln, können wir Zellen in Zukunft wesentlich genauer steuern als bisher“, sagt Bamberg.

Ansprechpartner
Prof. Dr. Ernst Bamberg
Max-Planck-Institut für Biophysik, Frankfurt am Main
Telefon: +49 69 6303-2000
Fax: +49 69 6303-2002
E-Mail: secretary-bamberg@biophys.mpg.de
Originalveröffentlichung
Sonja Kleinlogel, Ulrich Terpitz, Barbara Legrum, Deniz Gökbuget, Edward S Boyden, Christian Bamann, Philip G Wood & Ernst Bamberg
A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins

Nature Methods, Vol. 8(12); DOI:10.1038/NMETH.1766

Prof. Dr. Ernst Bamberg | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4737081/Optogenetik_Kombischalter

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik