Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Schalter - Lernen mit Licht

27.08.2015

Einem deutsch-französischen Team ist es gelungen, einen lichtempfindlichen Schalter für Nervenzellen zu entwickeln. Dies ermöglicht neue Einblicke in die Funktionsweise von Gedächtnis und Lernen, aber auch in die Entstehung von Krankheiten.

Lernen ist nur möglich, weil die Verknüpfungen zwischen den Nervenzellen im Gehirn fortwährend umgebaut werden: Je häufiger bestimmte Reizübertragungswege genutzt werden, desto besser prägen sich Informationen ein.


Signalübertragung an Synapsen (Grafik: nobeastsofierce / fotolia.com)

Sogenannte Neurorezeptoren sind dabei entscheidend an der Signalübertragung beteiligt. LMU-Wissenschaftler um Dirk Trauner, Professor für Chemische Biologie und Genetik an der LMU, haben nun in Zusammenarbeit mit Kollegen vom Institut Pasteur in Paris einen speziellen Rezeptor, der besonders für das Erinnerungsvermögen und die Speicherung von Informationen wichtig ist, durch Licht hoch präzise steuerbar gemacht. Damit werden neue Einblicke in die Mechanismen des Erinnerns möglich. Über ihre Ergebnisse berichten sie im Fachmagazin Nature Communications.

Nervenzellen kommunizieren mithilfe von chemischen Botenstoffen, sogenannten Neurotransmittern, die über den synaptischen Spalt – den schmalen Zwischenraum zwischen zwei Nervenzellen – diffundieren und Signale übertragen, indem sie an spezifische Rezeptoren binden.

Dabei hängt der Reiz, der eine Zelle erreicht, vom jeweiligen Rezeptor ab. „Ein ganz spezieller Rezeptor im Gehirn ist der N-Methyl-D-Aspartat (NMDA) Rezeptor. Dieser Rezeptor ist maβgeblich dafür verantwortlich, dass wir in der Lage sind, Erinnerungen zu bilden und zu lernen“, sagt Laura Laprell, Doktorandin in Trauners Arbeitsgruppe und eine der Erstautoren der Studie.

Präzise Steuerung im Millisekundentakt

Nun ist den Wissenschaftlern gelungen, mit dem Molekül ATG (Azobenzen-Triazol-Glutamat) einen lichtsensitiven Neurotransmitter zu synthetisieren, mit dem NMDA-Rezeptoren im Labor erstmals präzise und hoch spezifisch aktiviert und vor allem auch wieder inaktiviert werden können: Der neue Schalter ist im Gegensatz zu anderen optischen Schaltern zunächst nicht mit dem Rezeptor verbunden, sondern er diffundiert frei im synaptischen Spalt zwischen den Nervenzellen.

„Im Dunkeln ist ATG völlig inaktiv, erst bei Bestrahlung mit Licht bindet es an den Rezeptor und initiiert die Signalübertragung“, sagt Laprell – den Nervenzellen muss also das sprichwörtliche Licht aufgehen, wenn sie aktiv werden sollen. Die Bestrahlung mit UV-Licht wiederum inaktiviert ATG innerhalb von Millisekunden und ermöglicht so eine sehr präzise Steuerung der Reizübertragung.

Licht hat den Vorteil, dass es zeitlich und räumlich sehr präzise eingesetzt werden kann. Allerdings kann Licht bestimmter Wellenlängen auch schädlich für Gewebe sein. Daher ist es von besonderem Interesse, Moleküle zu entwickeln, die mit Licht langer Wellenlängen aktiviert werden können.

„Mit ATG ist genau das gelungen: Es ist nicht nur im Dunkeln inaktiv, kann also unter diesen Bedingungen ohne Nebeneffekte eingesetzt werden, sondern es hat zusätzlich die Besonderheit, dass es auch mit langwelligem Rotlicht hoch präzise aktiviert werden kann, indem man die sogenannte Zwei-Photonen Aktivierung nutzt. Bei dieser hochmodernen Technik wird das Molekül von zwei direkt aufeinander folgenden Lichtteilchen angeregt“, sagt Trauner. „Langwelliges Licht hat zudem den Vorteil, dass es besonders weit in Gewebe eindringen kann.“

Von den neuen Möglichkeiten zur gezielten Aktivierung von NMDA-Rezeptoren erwarten die Forscher neue Erkenntnisse über die Mechanismen bei der Entstehung neuronaler Verknüpfungen und damit auch über die Bildung von Erinnerungen. Es wird außerdem vermutet, dass neurodegenerative Erkrankungen wie etwa Alzheimer und Parkinson durch NMDA-Rezeptoren induziert oder verstärkt werden können.

„Es ist daher von großem Interesse für die Forschung, diese Rezeptorklasse besser zu verstehen und ihre Aktivität steuern zu können“, betont Trauner. „Wir arbeiten zurzeit mit anderen Gruppen zusammen, die ATG insbesondere in Hinblick auf seine Rolle bei neurodegenerativen Erkrankungen untersuchen.“
Nature Communications 2015

Publikation:
Optical control of NMDA-receptors with a diffusible photoswitch
Laura Laprell, Emilienne Repak, Vilius Franckevicius, Felix Hartrampf, Jan Terhag, Michael Hollmann, Martin Sumser, Nelson Rebola, David DiGregorio & Dirk Trauner
Nature Communications 2015
DOI: 10.1038/ncomms9076
http://www.nature.com/ncomms/2015/150827/ncomms9076/full/ncomms9076.html

Kontakt:
Dirk Trauner
Professor of Chemical Biology
Department of Chemistry • University of Munich
Tel: +49 (0)89 2180-77800
Fax: +49 (0)89 2180-77972
http://www.cup.uni-muenchen.de/oc/trauner

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie