Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Reizverarbeitung: Forscher entdecken Schalter für schnelleres Sehen im Fliegenauge

15.08.2017

Wissenschaftler der Uni Hohenheim und der Hebrew University of Jerusalem zeigen, was die schnelle Wahrnehmung von Lichtreizen in der Sehzelle von Fruchtfliegen ermöglicht

Fliegen können Lichtreize bis zu drei Mal so schnell verarbeiten wie Menschen. Ebenso wie Menschen müssen sich jedoch auch Fliegen an veränderte Lichtverhältnisse anpassen, zum Beispiel beim Wechsel von einer dunklen in eine helle Umgebung. Ein deutsch-israelisches Forschungsteam fand nun den Schalter innerhalb der Sehzelle, der diese Anpassung ermöglicht: eine Phosphatgruppe am sogenannten TRP-Kanal, einem Ionenkanal in der Zellmembran, der für die Übertragung von Sinnesreizen verantwortlich ist.


Eine Fruchtfliege (Drosophila melanogaster). Gut erkennbar: Das große Facettenauge. | Bildquelle: Universität Hohenheim / Olaf Voolstra

Autofahrer kennen das Problem: Bei schnellem Wechsel zwischen Hell und Dunkel, zum Beispiel am Ende eines Tunnels oder im flickernden Halbschatten einer Allee, braucht das Auge einen Moment, um sich anzupassen. Es fällt schwer, Objekte in der Umgebung deutlich auszumachen, und die Reaktionszeit verzögert sich.

Fliegen lösen Bildreize normalerweise deutlich schneller auf als Menschen: Sie können Bildreize mit einer Frequenz von bis zu 300 Hertz wahrnehmen, beim Menschen sind es nur bis zu 100 Hertz. „Im Kino könnten Fliegen die einzelnen Bilder des Films erkennen“, verdeutlicht Prof. Dr. Armin Huber vom Fachgebiet für Biosensorik der Universität Hohenheim den Unterschied.

Doch auch Fliegen brauchen bei wechselnden Lichtverhältnissen einige Sekunden zur Anpassung. Für diese Anpassung, so waren sich Forscher der Universität Hohenheim und der Hebrew University of Jerusalem einig, sorgt ein Schalter auf Zellebene. Nun ist es ihnen gelungen, diesen Schalter zu finden.


Phosphatgruppe sorgt für schnelle Bildverarbeitung

Ihre Theorie belegten die Forscher anhand von Sehzellen der Fruchtfliege Drosophila melanogaster, deren Facettenauge aus ca. 800 Einzelaugen besteht. Mithilfe des Massenspektrometers in der neuen Core Facility der Universität Hohenheim untersuchte das Forschungsteam diese Sehzellen und belegt: Der Schalter befindet sich am sogenannten TRP-Kanal, einem Durchlass an der Zellmembran.

Durch Öffnen und Schließen reguliert der Kanal das Eindringen von Ionen, also elektrisch geladenen Teilchen, in die Zelle. Fällt Licht ins Auge, öffnet er sich und lässt Natrium- und Calcium-Ionen in die Sehzelle ein. Dadurch ändert sich die elektrische Spannung an der Zellmembran und es wird ein elektrisches Signal erzeugt, das zu den Nervenzellen weitergeleitet wird.

Dr. Olaf Voolstra vom Fachgebiet Biosensorik erklärt, wie dann der Schalter umgelegt wird: „Das eingeströmte Calcium sorgt dafür, dass ein Enzym innerhalb der Zelle eine an den TRP-Kanal angedockte Phosphatgruppe entfernt. Sobald das passiert ist, kann die Fliege Bildreize schneller verarbeiten.“


Genetik liefert den Beweis

Um die Bedeutung des molekularen Schalters zu beweisen, veränderten die Wissenschaftler der Universität Hohenheim das Erbgut von Fruchtfliegen auf zwei Arten: bei einer Gruppe Fliegen in der Weise, dass die Phosphatgruppe sich von vornherein nicht an den Ionenkanal hängen kann, der Schalter also permanent auf „An“ steht.

Bei einer zweiten Gruppe Fliegen veränderten sie die Aminosäure des TRP-Kanals, die normalerweise nur im Dunkeln die Phosphatgruppe trägt, so, dass der Zelle eine dauerhafte Anheftung der Phosphatgruppe vorgetäuscht wird. Der Schalter bleibt bei diesen Fliegen unabhängig vom Lichteinfall auf Position „Aus“: Sie können Bilder nur langsam auflösen.

Anhand dieser gentechnisch modifizierten Fliegen lieferte das Team aus Israel den praktischen Nachweis: Bei beiden Fliegenvariationen testeten die Forscher, wie schnell Bildreize bei sich ändernden Lichtverhältnissen verarbeitet wurden. Dazu wurden die Fliegen den schnellen Lichtreizen eines Stroboskops ausgesetzt. Mittels einer Elektrode maßen die Forscher, wie gut das Auge den schnell wechselnden Lichtreizen folgen kann.

Fliegen, bei denen der Schalter auf Zellebene permanent auf „An“ stand, konnten den Lichtreizen auch dann noch folgen, wenn sie mit einer hohen Frequenz erfolgten. Die anderen Fliegen brauchten mindestens 8 Sekunden, um sich an das Licht zu gewöhnen und die Nachricht eines Bildreizes ans Gehirn weiterzugeben.

Der TRP-Kanal: Wichtiger Teil der Nervenzelle

Auch nachdem die Existenz des Schalters bestätigt ist, bleiben noch Fragen offen. Ihnen wollen die Forscher sich als nächstes widmen, so Dr. Voolstra: „Wir wollen nun das Enzym genauer untersuchen, das die Ablösung der Phosphatgruppe bewerkstelligt, also den Schalter umlegt.“

Auch wenn die Forschungsergebnisse speziell für das Fliegenauge gelten: Die Erkenntnisse könnten langfristig auch bei Forschungsfragen zu menschlichen Zellen helfen. „In der menschlichen Sehzelle gibt es zwar keine TRP-Kanäle“, erklärt Prof. Dr. Huber. „Sie kommen aber in anderen Arten von Nervenzellen vor, die zum Beispiel für die Wahrnehmung von Hitze und Schmerzen auf der Haut oder auch den Schlafrhythmus zuständig sind.“

Text: Barsch / Klebs

Kontakt für Medien:

Prof. Dr. Armin Huber, Leiter des Fachgebiets Biosensorik
T 0711 459 23611, E armin.huber@uni-hohenheim.de
Dr. rer. nat. Olaf Voolstra, Fachgebiet Biosensorik
T 0711 459 23063, E voolstra@uni-hohenheim.de

Barsch / Klebs | Universität Hohenheim
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte