Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optimiertes Hämoglobin von Mensch und Schnabeltier

10.07.2012
Neutronen zeigen, wie sich das sauerstofftransportierende Protein an die Körpertemperatur verschiedener Arten anpasst

Für den gesunden menschlichen Organismus sind etwa 37 Grad Celsius ideal, Schnabeltiere kommen dagegen schon bei 33 Grad gut zurecht. Jülicher Neutronenforscher haben zusammen mit französischen und australischen Kollegen herausgefunden, wie sich das Hämoglobin von verschiedenen Arten im Laufe der Evolution an die unterschiedlichen Körpertemperaturen angepasst hat. Es ist so beschaffen, dass es den Sauerstoff bei der jeweiligen Temperatur optimal von der Lunge in die Zellen transportieren kann.


Struktur des Hühner-Hämoglobins: Die vier grau, gelb, blau und rot markierten Untereinheiten im Inneren, an denen die Sauerstoffbindung stattfindet, sind je nach Spezies aus verschiedenen Aminosäuren zusammengesetzt und bestimmen so die temperaturabhängige Elastizität des gesamten Moleküls.
Forschungszentrum Jülich

Die Forscher haben das Hämoglobin mehrerer Arten untersucht, darunter: ein Schnabeltier, das die niedrigste Körpertemperatur der ausgewählten Wirbeltiere aufweist (33 °C), ein Vogel, das gewöhnliche Huhn, mit einer sehr hohen Körpertemperatur von 42,8 °C, sowie ein wechselwarmes Krokodil (25-34 °C).

Damit die Sauerstoffmoleküle die vier Eisenatome des Hämoglobins erreichen können, faltet sich das Hämoglobin teilweise auf und wird hinreichend flexibel, ohne dass seine strukturelle Integrität gefährdet wird. Bereits durch frühere Forschungsarbeiten war bekannt, dass die Elastizität der Hämoglobine von verschiedenen Spezies an die unterschiedlichen Körpertemperaturen angepasst ist. Doch welcher temperaturempfindliche Teil des Hämoglobins diese evolutionäre Anpassung bewirkt hat, blieb bisher offen.

Der Schlüssel zu diesem Rätsel, beschrieben im Journal of the Royal Society Interface, sind chemische Unterschiede zwischen den verschiedenen Hämoglobinen. Während sich alle aus Aminosäuren zusammensetzen, variieren die Arten der Aminosäuren und ihre Reihenfolge. Die Forschung konzentrierte sich auf Aminosäuren zwischen kleinen Löchern des Hämoglobins, Höhlen genannt, von denen bekannt ist, dass sie bei der Regulierung der Sauerstoffabsorption eine Rolle spielen. Die Variation dieser Aminosäuren beeinflusst direkt die Steifigkeit des gesamten Proteins und wurde von der Evolution so ausgewählt, dass die Leistungsfähigkeit bei der Körpertemperatur jeder einzelnen Art optimiert wird.

„Wir haben eine direkte Korrelation zwischen der Flexibilität dieser Proteine und der mittleren Körpertemperatur der verschiedenen Arten, in denen sie wirken, festgestellt“, erläutert Dr. Andreas Stadler vom Forschungszentrum Jülich. „Hämoglobin arbeitet als hochsensibles molekulares Thermometer für die Körpertemperatur. Unsere Ergebnisse könnten insbesondere für die Forschung an roten Blutkörperchen in Biologie, Bio-Engineering und Biomedizin von Interesse sein, da sie erklären, wie die Evolution die lebenswichtige Rolle von Hämoglobin in den verschiedenen Arten optimiert hat.“

Die Flexibilität und Steifigkeit der verschiedenen Hämoglobine wurden mit Neutronenstreu-Experimenten am FRM II in Garching und am ILL in Grenoble, zwei der weltweit intensivsten Neutronenquellen, gemessen. Neutronenstreuung wurde gewählt, weil mit dieser Methode die Bewegung innerhalb komplexer Strukturen exakt gemessen werden kann, ohne die für Strahlung sehr empfindlichen Proben zu zerstören. Um herauszufinden, welche Aminosäuren für die Variation der Steifigkeit verantwortlich sind, führte die Forschergruppe ergänzende Computersimulationen am CNRS in Paris durch.

Originalpublikation:
A. M. Stadler, C. J. Garvey, A. Bocahut, S. Sacquin-Mora, I. Digel, G. J. Schneider, F. Natali, G. M. Artmann, and G. Zaccai
Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics
J R Soc Interface 2012 (Vorveröffentlichung online, 13. Juni 2012)
DOI: 10.1098/rsif.2012.0364
Abstract:
http://rsif.royalsocietypublishing.org/content/early/2012/06/07/rsif.2012.0364.
abstract?sid=e5bbea85-2677-427c-8568-1650e4ed085c
Weitere Informationen:
Institute of Complex Systems & Jülich Centre for Neutron Science, Bereich Neutronenstreuung (ICS-1 / JCNS-1):

http://www.fz-juelich.de/ics/ics-1/DE/Home/home_node.html

Pressemitteilung „Neutronen erklären, wie die Evolution von Hämoglobin dem Schnabeltier atmen hilft“ des Instituts Laue-Langevin (ILL) vom 20. Juni 2012: http://www.ill.eu/de/news-events/press-room/presseinformationen/13062012/

Ansprechpartner:
Dr. Andreas Stadler
Tel. 02461 61-4759
a.stadler@fz-juelich.de
Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics