Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ohren für Icarus

13.02.2018

Russische Rakete bringt Antenne des Tierbeobachtungssystems zur Internationalen Raumstation

Eine russische Rakete hat heute die Antenne der Icarus-Mission zur Internationalen Raumstation ISS transportiert. Damit ist nach dem Icarus-Bordcomputer eine weitere zentrale Komponente des weltraumgestützten Tierbeobachtungssystems erfolgreich im All.


Tiere beobachten aus dem All: Die Antenne des Icarus-Systems wurde erfolgreich zur ISS transportiert.

© DLR / MPG


Das Internet der Tiere: So funktioniert das Tierbeobachtungssystem Icarus

© MPI für Ornithologie

Mit dem von Wissenschaftlern der Max-Planck-Gesellschaft in Zusammenarbeit mit der Russischen und Deutschen Raumfahrtagentur Roskosmos und DLR sowie der Universität Konstanz entwickelten System wollen Forscher weltweit die Bewegungen von Tieren untersuchen und die Bedingungen messen, in den diese leben.

Die russische Sojus-Progress-Rakete, die heute um 9:13 Uhr mitteleuropäischer Zeit vom Weltraumbahnhof Baikonur in Kasachstan abgehoben hat, hatte eine wissenschaftlich besonders wertvolle Fracht an Bord: die knapp 200 Kilogramm schwere Icarus-Antenne. „Der erfolgreiche Start war ein weiterer Meilenstein dieser Mission.

Nicht auszudenken, wenn dabei etwas schiefgegangen wäre – das hätte Icarus um Jahre zurückgeworfen. Umso größer war die Erleichterung, dass alles geklappt hat. Nach dem Start haben wir vor lauter Freude erstmal angestoßen – natürlich standesgemäß mit einem Gläschen Wodka“, erzählt Martin Wikelski, Direktor am Max-Planck-Institut für Ornithologie in Radolfzell und Leiter der Icarus-Mission.

Die zur ISS gebrachte Antenne besteht aus drei bis zu zwei Meter langen Empfangs- und einer Sendeantenne. Die Empfangsantennen können weltweit die Daten von 15 Millionen und mehr Sendern an jedem Ort auf der Erde empfangen. Diese fünf Gramm leichten Messgeräte im Miniaturformat beruhen auf einer neuen Technologie und wurden speziell für die Icarus-Mission entwickelt.

Mit ihnen können selbst kleine Tiere wie Zugvögel ausgestattet werden. Die ersten Tiere, die mit der neuen Icarus-Technologie ausgestattet werden, sind Amseln. „Ab Juni werden wir an 35 Orten in Deutschland rund 300 Amseln mit unseren Minisendern ausstatten. So wollen wir herausfinden, wo sie leben, wohin sie fliegen, wo sie sterben“, erklärt Wikelski.

Die Sendeantenne wiederum schickt den Icarus-Sendern Konfigurationskommandos und die genauen Bahndaten, wann sie das nächste Mal wieder Kontakt zur Empfangsstation haben werden. Die Antenne empfängt mit ihren beiden faltbaren Flügeln Signale aus einem 30 mal 800 Kilometer großen Gebiet. Da sich die Flugbahn der Raumstation bei jeder Erdumrundung um 2500 Kilometer nach Westen verschiebt, decken die Empfangsantennen so in einem Tag bis zu 80 Prozent der Erdoberfläche ab.

Anfang August werden sich die beiden russischen Kosmonauten Oleg Artemyev und Sergei Prokopiev auf einen fünfstündigen Weltraumspaziergang begeben und die Antenne an der Außenseite des russischen Servicemoduls der ISS montieren.

Damit beginnt eine etwa zweimonatige Testphase, in der überprüft werden soll, ob alle Komponenten des Systems wie vorgesehen funktionieren. Wenn alles glattgeht, kann Icarus im Herbst seinen wissenschaftlichen Betrieb aufnehmen. Weltweit werden dann 150 Forschungsprojekte die Wanderungen unterschiedlichster Tiere untersuchen, darunter Meeresschildkröten, Jaguare, Fledermäuse und Zugvögel.

Weitere Informationen:

http://www.mpg.de/11939568/ohren-fuer-icarus?c=2191 Originalmeldung
http://www.tiersensoren.mpg.de/de Leben in Bewegung


Dr. Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
https://www.mpg.de/11939568/ohren-fuer-icarus?c=2191

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics