Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf die Oberfläche kommt es an: die Wirkung von Nanomaterialien

12.06.2013
Ob und wie Nanomaterialien die Gesundheit beeinträchtigen, hängt nicht nur von deren Größe, sondern auch von der Gestaltung ihrer Oberfläche ab.

Dies ist eine wichtige Erkenntnis, die auf der Abschlusskonferenz des Verbundprojektes „Nanostrukturierte Materialien – Gesundheit, Exposition und Materialeigenschaften“ (nanoGEM) im Bundesinstitut für Risikobewertung am 12. und 13. Juni 2013 in Berlin erläutert wird.

Die Ergebnisse von nanoGEM zeigen, dass „Nano“ nicht automatisch auch toxisch bedeutet. Neben der Größe sind noch viele weitere Faktoren dafür verantwortlich, ob ein Material gesundheitsschädigende Wirkungen hat oder nicht. Das Projekt nanoGEM liefert wichtige Erkenntnisse zur Identifizierung von relevanten Eigenschaften. Sind diese Eigenschaften identifiziert und klassifiziert, werden die notwendigen Risikobeurteilungen deutlich vereinfacht und Gruppierungen auf der Basis bestimmter physikalisch-chemischer Eigenschaften für die Risikobewertung möglich. Solche Kriterien können dann auch bei der Entwicklung von neuen Nanomaterialien berücksichtigt werden, um deren Einsatz sicherer zu gestalten.

In umfassenden toxikologischen Untersuchen wurden in diesem Projekt insgesamt 16 verschiedene Nanopartikel untersucht. Es wurde unter anderem geprüft, was mit den verschiedenen Nanopartikeln passiert, wenn sie eingeatmet oder verschluckt werden und wie sie sich im Körper verteilen bzw. verhalten. Testsubstanzen waren Siliziumdioxid (SiO2) und Zirkoniumdioxid (ZrO2), die beispielsweise in Lacken eingesetzt werden, um deren Kratzfestigkeit zu erhöhen, sowie Silberpartikel (Ag), die in Drucktinten für die Solartechnik verwendet werden. Untersucht wurden dabei erstmals nicht nur die reinen Partikel, sondern auch sogenannte funktionalisierte Partikel. Bei diesen werden Moleküle auf der Oberfläche der Partikel gebunden, um beispielsweise die Verarbeitbarkeit, Löslichkeit oder Stabilität der Produkte zu erhöhen.

„Nanopartikel, die oral verabreicht werden, egal ob funktionalisiert oder nicht, zeigten keine signifikanten toxischen Effekte in allen unseren Untersuchungen“, erklärt der Leiter des Projektes, Dr. Thomas Kuhlbusch vom Institut für Energie- und Umwelttechnik (IUTA) e.V. in Duisburg, „ein Einfluss der Funktionalisierung der Partikel auf die Wirkung zeigte sich hingegen bei den Versuchen, in denen die Partikel eingeatmet oder auf Zellen direkt aufgebracht wurden.“ Dieses Ergebnis unterstreicht die Bedeutung der Partikeloberfläche für die Wirkung von Nanopartikeln.

Ein weiterer zentraler Punkt der Forschungen zur Sicherheit von Nanomaterialien ist, ob die in Nanokompositmaterialien enthaltenden Nanopartikel überhaupt freigesetzt werden. Nur freigesetzte Nanopartikel können vom Menschen aufgenommen werden. Im Projekt wurden deshalb Schleif- und Verwitterungsuntersuchungen von nanopartikelhaltigen Kunststoffen durchgeführt. Dabei zeigte sich, dass die ursprünglich eingebrachten Nanopartikel fast ausschließlich eingebunden im Kunststoff freigesetzt werden, so dass sich in separaten toxikologischen Untersuchungen keine spezifische Toxizität nachweisen ließ.

Außerdem wurden Messstrategien entwickelt, um Nanopartikel in der Atemluft bestimmen zu können. Dies dient vor allem der Überwachung an Arbeitsplätzen, um die Arbeiten mit Nanomaterialien sicher zu gestalten. Der hier entwickelte Ansatz basiert auf den drei Stufen, Informationserhebung, orientierende Messungen (Screening) und einem erweiterten Schritt zur genauen Expositionsbeurteilung, der Intensivmessung. Durch dieses dreistufige Verfahren entstehen zunächst vergleichsweise niedrige Kosten in den ersten beiden Stufen, so dass nun auch kleine Betriebe solche Sicherheitsuntersuchungen durchführen können.

Nanomaterialien bestehen aus winzig kleinen Partikeln, deren Durchmesser noch mehr als tausendmal kleiner ist als ein menschliches Haar. Durch die enorme Ver-kleinerung weisen diese Materialien neuartige und nützliche Eigenschaften auf. Herkömmliche Produkte lassen sich durch den Einsatz von Nanomaterialien in ihren Eigenschaften verbessern. Nanomaterialien werden beispielsweise als Nanokompositmaterialien zum energieeffizienten Bau von Automobilen oder Flugzeugen eingesetzt, denn bei geringerem Gewicht lässt sich eine höhere Festigkeit erreichen. Aber auch in alltäglichen Produkten wie Kosmetika, Textilien oder Haushaltswaren finden sich Nanomateralien. Dabei ist jedoch ein Nanopartikel nicht wie das andere. Verschiedene Materialien weisen unterschiedliche Eigenschaften auf - ganz in Abhängigkeit von der chemischen Zusammensetzung, der Größe, der Form oder der Oberflächenbeschichtung.

Im Forschungsverbund nanoGEM (Nanostrukturierte Materialien – Gesundheit, Exposition und Materialeigenschaften) haben sich 19 Partner aus Universitäten und Forschungsinstituten, Behörden sowie der Industrie über 3 Jahre mit der Frage der Sicherheit von Nanomaterialien befasst. Das Projekt wurde vom Bundesministerium für Bildung und Forschung (BMBF) und von der Industrie mit insgesamt rund 6,5 Millionen Euro gefördert. Die Forscher entwickelten unter anderem neue Messmethoden zur Bestimmung von Nanopartikeln in Geweben, sie untersuchten die Freisetzung und Veränderung der Eigenschaften von Nanopartikeln aus Nanokompositen sowie die Aufnahme und Verteilung von Nanopartikeln im menschlichen Körper in Abhängigkeit von Größe, Struktur und Oberflächeneigenschaften.

Kontakt:
PD Dr. Thomas Kuhlbusch
IUTA e.V.
Bliersheimerstrasse 60
47229 Duisburg
E-mail: tky@iuta.de

Beate Kostka | idw
Weitere Informationen:
http://www.nanogem.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics