Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nur noch wenige weiße Flecken auf der Protein-Landkarte

30.05.2014

Die Entschlüsselung des menschlichen Proteoms kommt voran: Unter Federführung der Technischen Universität München (TUM) haben Wissenschaftlerinnen und Wissenschaftler jetzt mehr als 18.000 Proteine im menschlichen Körper kartiert – 92 Prozent des gesamten Proteoms. Die Arbeit liefert außerdem sensationelle Erkenntnisse über das Zusammenspiel von DNA, RNA und Proteinen als die molekularen Hauptakteure des Lebens. Seine Ergebnisse stellt das Team in der aktuellen Ausgabe von Nature vor.

Mit über 18.000 Eiweißstoffen haben die TUM-Forscherinnen und -Forscher einen nahezu vollständigen Proteinkatalog des Menschen erstellt und in der frei verfügbaren Datenbank ProteomicsDB (https://www.proteomicsdb.org) hinterlegt, die die TUM und das Softwareunternehmen SAP gemeinsam entwickelt haben. Sie enthält zum Beispiel Daten zur Art, Verteilung und Menge von Proteinen in verschiedenen Zell- und Gewebetypen sowie Körperflüssigkeiten.


Forscher der Technischen Universität München haben einen ersten umfassenden Katalog aller Proteine im menschlichen Körper erstellt.

H. Hahne/TUM, BioJS

Die Untersuchungen zeigen, dass einerseits etwa 10.000 Proteine in vielen Zellen und Organen vorkommen, um deren alltägliches Leben zu organisieren. Andererseits ist das Proteinmuster eines jeden Organs einzigartig und essentiell für seine Funktion. Technisch möglich wurde das Projekt durch die Kombination zweier Hochleistungstechnologien – der Massenspektrometrie und des In-Memory Computing.

Vom Bauplan zum Protein: RNA gibt Stückzahl vor

Wie wird aus einem Gen ein Protein? Dazu wird der DNA-Bauplan in mehreren Schritten als RNA-Kopie ausgelesen. Diese Boten-RNA (mRNA) dient dann als Vorlage für die Herstellung eines Proteins. In der Studie haben die Wissenschaftler jetzt gezeigt, dass jede mRNA eine definierte Anzahl an Proteinkopien vorgibt.

Dieser „Kopierschlüssel“ ist für jedes Protein spezifisch. „Offensichtlich kennt jedes mRNA-Molekül die Stückzahl für sein Protein – und weiß, ob davon 10, 100 oder 1.000 Ausgaben zu produzieren sind“, erläutert Prof. Bernhard Küster, Leiter des TUM-Lehrstuhls für Proteomik und Bioanalytik. „Da wir dieses Verhältnis nun für sehr viele Proteine kennen, können wir in praktisch jedem Gewebe von der mRNA auf die Proteinmenge schließen – und umgekehrt.“

Neue Gene – alte Gene

Zu ihrer großen Überraschung fanden die Forscher hunderte Proteinfragmente, die von DNA-Bereichen außerhalb heute bekannter Gene produziert werden. Diese neuen Proteine haben womöglich neuartige biologische Eigenschaften und Funktionen, deren Bedeutung aber noch unbekannt ist.

Demgegenüber konnten die Wissenschaftler bislang etwa 2.000 Proteine, die laut Genkarte existieren sollten noch nicht auffinden. Eine Reihe dieser Proteine sind womöglich nur in der Embryonalentwicklung vorhanden. Offenbar sind viele bekannte Gene aber auch funktionslos geworden. Das trifft nach jetziger Erkenntnis vor allem auf Geruchsrezeptoren zu – ein Hinweis, dass für den modernen Menschen der Geruchssinn nicht mehr überlebenswichtig ist.

„Vielleicht sehen wir der Evolution gerade bei der Arbeit zu“, sagt Küster „Unser Organismus deaktiviert überflüssige Gene – und testet an anderer Stelle neue Gen-Prototypen.“ Daher lässt sich vielleicht nie exakt sagen, wie viele menschliche Proteine es tatsächlich gibt.

Proteinmuster bestimmen die Wirksamkeit von Medikamenten

Schon frühere Studien zeigten, dass bestimmte Proteinmuster die Wirksamkeit von Medikamenten vorhersagen können. In der aktuellen Arbeit nahmen die Wissenschaftler 24 Krebsmedikamente ins Visier, deren Wirksamkeit auf 35 Krebszelllinien klar mit deren Proteinprofilen in Zusammenhang stand.

„Damit“, so Küster, „öffnet sich die Tür für eine individualisierte Behandlung von Patienten einen Spalt weiter. Mit Kenntnis des Proteinprofils eines Tumors könnten Medikamente zukünftig zielgerichteter eingesetzt werden. Die medizinische Forschung kann darüber hinaus neue Wirkstoffkombinationen erproben und die Therapie noch individueller auf die Bedürfnisse der Patienten ausrichten.“

Publikation:
Mathias Wilhelm, Judith Schlegl, Hannes Hahne, Amin Moghaddas Gholami, Marcus Lieberenz, Mikhail M. Savitski, Emanuel Ziegler, Lars Butzmann, Siegfried Gessulat, Harald Marx, Toby Mathieson, Simone Lemeer, Karsten Schnatbaum, Ulf Reimer, Holger Wenschuh, Martin Mollenhauer, Julia Slotta-Huspenina, Joos-Hendrik Boese, Marcus Bantscheff, Anja Gerstmair, Franz Faerber & Bernhard Kuster, Mass-spectrometry-based draft of the human proteome; Nature, DOI: 10.1038/nature13319

Weitere Informationen:

Proteinbibliothek für die biomedizinische Forschung:
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/30911/

Typisches Proteinprofil von Tumorzellen entschlüsselt:
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/30995/

Kontakt:
Technische Universität München
Lehrstuhl für Proteomik und Bioanalytik
http://www.wzw.tum.de/proteomics

Prof. Dr. Bernhard Küster
Tel.: +49 8161 71 5696
kuster@tum.de

Dr. Hannes Hahne
Tel.: +49 8161 71 4265
hannes.hahne@tum.de

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit