Nur noch wenige weiße Flecken auf der Protein-Landkarte

Forscher der Technischen Universität München haben einen ersten umfassenden Katalog aller Proteine im menschlichen Körper erstellt. H. Hahne/TUM, BioJS

Mit über 18.000 Eiweißstoffen haben die TUM-Forscherinnen und -Forscher einen nahezu vollständigen Proteinkatalog des Menschen erstellt und in der frei verfügbaren Datenbank ProteomicsDB (https://www.proteomicsdb.org) hinterlegt, die die TUM und das Softwareunternehmen SAP gemeinsam entwickelt haben. Sie enthält zum Beispiel Daten zur Art, Verteilung und Menge von Proteinen in verschiedenen Zell- und Gewebetypen sowie Körperflüssigkeiten.

Die Untersuchungen zeigen, dass einerseits etwa 10.000 Proteine in vielen Zellen und Organen vorkommen, um deren alltägliches Leben zu organisieren. Andererseits ist das Proteinmuster eines jeden Organs einzigartig und essentiell für seine Funktion. Technisch möglich wurde das Projekt durch die Kombination zweier Hochleistungstechnologien – der Massenspektrometrie und des In-Memory Computing.

Vom Bauplan zum Protein: RNA gibt Stückzahl vor

Wie wird aus einem Gen ein Protein? Dazu wird der DNA-Bauplan in mehreren Schritten als RNA-Kopie ausgelesen. Diese Boten-RNA (mRNA) dient dann als Vorlage für die Herstellung eines Proteins. In der Studie haben die Wissenschaftler jetzt gezeigt, dass jede mRNA eine definierte Anzahl an Proteinkopien vorgibt.

Dieser „Kopierschlüssel“ ist für jedes Protein spezifisch. „Offensichtlich kennt jedes mRNA-Molekül die Stückzahl für sein Protein – und weiß, ob davon 10, 100 oder 1.000 Ausgaben zu produzieren sind“, erläutert Prof. Bernhard Küster, Leiter des TUM-Lehrstuhls für Proteomik und Bioanalytik. „Da wir dieses Verhältnis nun für sehr viele Proteine kennen, können wir in praktisch jedem Gewebe von der mRNA auf die Proteinmenge schließen – und umgekehrt.“

Neue Gene – alte Gene

Zu ihrer großen Überraschung fanden die Forscher hunderte Proteinfragmente, die von DNA-Bereichen außerhalb heute bekannter Gene produziert werden. Diese neuen Proteine haben womöglich neuartige biologische Eigenschaften und Funktionen, deren Bedeutung aber noch unbekannt ist.

Demgegenüber konnten die Wissenschaftler bislang etwa 2.000 Proteine, die laut Genkarte existieren sollten noch nicht auffinden. Eine Reihe dieser Proteine sind womöglich nur in der Embryonalentwicklung vorhanden. Offenbar sind viele bekannte Gene aber auch funktionslos geworden. Das trifft nach jetziger Erkenntnis vor allem auf Geruchsrezeptoren zu – ein Hinweis, dass für den modernen Menschen der Geruchssinn nicht mehr überlebenswichtig ist.

„Vielleicht sehen wir der Evolution gerade bei der Arbeit zu“, sagt Küster „Unser Organismus deaktiviert überflüssige Gene – und testet an anderer Stelle neue Gen-Prototypen.“ Daher lässt sich vielleicht nie exakt sagen, wie viele menschliche Proteine es tatsächlich gibt.

Proteinmuster bestimmen die Wirksamkeit von Medikamenten

Schon frühere Studien zeigten, dass bestimmte Proteinmuster die Wirksamkeit von Medikamenten vorhersagen können. In der aktuellen Arbeit nahmen die Wissenschaftler 24 Krebsmedikamente ins Visier, deren Wirksamkeit auf 35 Krebszelllinien klar mit deren Proteinprofilen in Zusammenhang stand.

„Damit“, so Küster, „öffnet sich die Tür für eine individualisierte Behandlung von Patienten einen Spalt weiter. Mit Kenntnis des Proteinprofils eines Tumors könnten Medikamente zukünftig zielgerichteter eingesetzt werden. Die medizinische Forschung kann darüber hinaus neue Wirkstoffkombinationen erproben und die Therapie noch individueller auf die Bedürfnisse der Patienten ausrichten.“

Publikation:
Mathias Wilhelm, Judith Schlegl, Hannes Hahne, Amin Moghaddas Gholami, Marcus Lieberenz, Mikhail M. Savitski, Emanuel Ziegler, Lars Butzmann, Siegfried Gessulat, Harald Marx, Toby Mathieson, Simone Lemeer, Karsten Schnatbaum, Ulf Reimer, Holger Wenschuh, Martin Mollenhauer, Julia Slotta-Huspenina, Joos-Hendrik Boese, Marcus Bantscheff, Anja Gerstmair, Franz Faerber & Bernhard Kuster, Mass-spectrometry-based draft of the human proteome; Nature, DOI: 10.1038/nature13319

Weitere Informationen:

Proteinbibliothek für die biomedizinische Forschung:
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/30911/

Typisches Proteinprofil von Tumorzellen entschlüsselt:
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/30995/

Kontakt:
Technische Universität München
Lehrstuhl für Proteomik und Bioanalytik
http://www.wzw.tum.de/proteomics

Prof. Dr. Bernhard Küster
Tel.: +49 8161 71 5696
kuster@tum.de

Dr. Hannes Hahne
Tel.: +49 8161 71 4265
hannes.hahne@tum.de

Media Contact

Dr. Ulrich Marsch idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer