Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der nukleare GAU ist wahrscheinlicher als gedacht

22.05.2012
Westeuropa trägt das weltweit höchste Risiko einer radioaktiven Kontamination durch schwere Reaktorunfälle

Katastrophale nukleare Unfälle wie die Kernschmelzen in Tschernobyl und Fukushima sind häufiger zu erwarten als bislang angenommen.


Weltweite Wahrscheinlichkeit einer radioaktiven Kontamination: Die Karte gibt in Prozent an, wie hoch die jährliche Wahrscheinlichkeit einer radioaktiven Verseuchung von über 40 Kilobecquerel pro Quadratmeter ist. In Westeuropa liegt sie bei etwa zwei Prozent in einem Jahr. © Daniel Kunkel, MPI für Chemie, 2011

Wissenschaftler des Max-Planck-Instituts für Chemie in Mainz haben anhand der bisherigen Laufzeiten aller zivilen Kernreaktoren weltweit und der aufgetretenen Kernschmelzen errechnet, dass solche Ereignisse im momentanen Kraftwerksbestand etwa einmal in 10 bis 20 Jahren auftreten können und damit 200 mal häufiger sind als in der Vergangenheit geschätzt. Zudem ermittelten die Forscher, dass die Hälfte des radioaktiven Cäsium-137 bei einem solchen größten anzunehmenden Unfall mehr als 1.000 Kilometer weit transportiert würde.

Die Ergebnisse zeigen, dass Westeuropa – inklusive Deutschland – wahrscheinlich einmal in etwa 50 Jahren mit mehr als 40 Kilobecquerel radioaktivem Cäsium-137 pro Quadratmeter belastet wird. Ab dieser Menge gilt ein Gebiet laut der Internationalen Atomenergie Behörde IAEA als radioaktiv kontaminiert. Die Forscher fordern aufgrund ihrer Erkenntnisse eine tiefgehende Analyse und Neubetrachtung der Risiken, die von Kernkraftwerken ausgehen.

Die Reaktorkatastrophe in Fukushima hat weltweit Zweifel an der Kernenergie geschürt und in Deutschland den Ausstieg aus der Kernenergie angestoßen. Dass das Risiko einer solchen Katastrophe höher ist als bislang angenommen, belegt nun eine Studie von Forschern um Jos Lelieveld, Direktor am Max-Planck-Institut für Chemie in Mainz: „Nach Fukushima habe ich mich gefragt, wie groß die Wahrscheinlichkeit ist, dass ein solcher Unfall wieder passiert, und ob wir die Verbreitung der Radioaktivität mit unseren Atmosphärenmodellen berechnen können.“ Den Ergebnissen der Untersuchung zufolge, dürfte es einmal in 10 bis 20 Jahren zu einer Kernschmelze in einem der derzeit aktiven Reaktoren kommen. Momentan sind weltweit 440 Kernreaktoren in Betrieb, 60 weitere befinden sich in Planung.

Um die Wahrscheinlichkeit einer Kernschmelze zu ermitteln, stellten die Mainzer Forscher eine einfache Rechnung an: Sie teilten die Laufzeit aller Kernreaktoren weltweit von der Inbetriebnahme des ersten zivilen Reaktors bis heute durch die Zahl der bisherigen Kernschmelzen. Die Laufzeit der Reaktoren summiert sich auf 14.500 Jahre; die Zahl der Kernschmelzen beträgt vier – eine in Tschernobyl und drei in Fukushima. Daraus ergibt sich, dass es in 3.625 Reaktorjahren zu einem GAU kommt, dem größten anzunehmenden Unfall wie ihn die Internationalen Bewertungsskala für nukleare Ereignisse (International Nuclear Event Scale, INES) definiert. Selbst wenn man dieses Ergebnis auf einen GAU in 5.000 Reaktorjahren aufrundet, um das Risiko konservativ abzuschätzen, liegt das Risiko 200mal höher als Schätzungen der US-amerikanischen Zulassungskommission für Kernreaktoren im Jahr 1990 ergaben.

Ein Viertel der radioaktiven Partikel wird weiter als 2.000 Kilometer transportiert

Für ihre Studien unterschieden die Mainzer Forscher nicht, wie alt ein Kernreaktor ist, um welchen Typ es sich handelt oder ob er beispielsweise in einem besonders erdbebengefährdeten Gebiet steht. So tragen sie der Tatsache Rechnung, dass es auch in einem vermeintlich sicheren Reaktor zu einer Kernschmelze kommen kann – nicht zuletzt, weil sich nicht alle möglichen Ursachen eines solchen fatalen Unfalls vorhersehen lassen. Schließlich hatte auch die Reaktorkatastrophe in Japan niemand für möglich gehalten.

Nun bestimmten die Forscher die geografische Verteilung von radioaktiven Gasen und Partikeln rund um eine mögliche Unglücksstelle mit Hilfe eines Computermodells, das die Erdatmosphäre beschreibt. Das Atmosphärenchemie-Modell berechnet meteorologische Größen sowie chemische Reaktionen in der Atmosphäre. Anhand des Modells kann man beispielsweise die globale Verteilung von Spurengasen berechnen und es daher auch für Voraussagen zur Verbreitung von radioaktiven Gasen und Partikeln nutzen. Um die radioaktive Verseuchung näherungsweise zu ermitteln, berechneten die Forscher, wie sich Partikel des radioaktiven Cäsium-137 (137Cs) in der Atmosphäre verbreiten und wo sie in welchen Mengen über den Niederschlag in den Boden gelangen. Das 137Cs-Isotop entsteht als Zerfallsprodukt bei einer Kernspaltung von Uran, es hat eine Halbwertszeit von 30 Jahren und bildete nach den Havarien von Tschernobyl und Fukushima einen wichtigen Teil der radioaktiven Belastung.

Die Simulation der Mainzer Forscher ergab, dass durchschnittlich nur acht Prozent der 137Cs-Emission in einem Umkreis von 50 Kilometern um ein verunglücktes Kernkraftwerk nieder gehen. Ungefähr 50 Prozent der Teilchen würde innerhalb von 1.000 Kilometern abgelagert, und etwa 25 Prozent würde sogar weiter als 2.000 Kilometer transportiert. Diese Ergebnisse belegen, dass Reaktorunfälle weit über Staatsgrenzen hinweg radioaktive Verseuchung herbeiführen können.

Westeuropa trägt weltweit das höchste Risiko einer radioaktiven Kontamination

Die Ergebnisse der Transportrechnungen kombinierten die Forscher mit der ermittelten Wahrscheinlichkeit einer Kernschmelze und der tatsächlichen Reaktordichte in der Welt, um zu bestimmen, wie oft eine radioaktive Kontamination droht. Laut Definition der Internationalen Atomenergie Behörde IAEA gilt ein Gebiet mit mehr als 40 Kilobecquerel Radioaktivität pro Quadratmeter als kontaminiert. Zum Vergleich: Nach dem Unglück von Tschernobyl belastete der radioaktive Niederschlag von Cäsium-137 den Boden in Deutschland mit bis zu 40 Kilobecquerel pro Quadratmeter.

Wie das Mainzer Team nun feststellte, droht eine Verseuchung mit mehr als 40 Kilobecquerel pro Quadratmeter in Westeuropa, wo die Reaktordichte sehr hoch ist, durchschnittlich einmal in 50 Jahren. Im weltweiten Vergleich tragen die Bürger im dicht besiedelten Südwestdeutschland durch die zahlreichen Kernkraftwerke an den Grenzen von Frankreich, Belgien und Deutschland das höchste Risiko einer radioaktiven Kontamination.

In Westeuropa wären bei einer einzigen Kernschmelze durchschnittlich 28 Millionen Menschen von einer Kontamination mit mehr als 40 Kilobecquerel pro Quadratmeter betroffen. Noch höher ist diese Zahl in Südasien. Ein schwerer nuklearer Unfall würde dort etwa 34 Millionen Menschen betreffen, im Osten der USA und in Ostasien wären es 14 bis 21 Millionen Menschen.

„Der Ausstieg Deutschlands aus der Kernenergie verringert zwar das nationale Risiko einer radioaktiven Verseuchung. Deutlich geringer wäre die Gefährdung, wenn auch Deutschlands Nachbarn ihre Reaktoren abschalteten“, resümiert Jos Lelieveld. „Notwendig ist nicht nur eine tiefgehende und öffentlich zugängliche Analyse der tatsächlichen Risiken, die von Kernkraftwerken ausgehen. Vor dem Hintergrund unserer Erkenntnisse sollte meiner Meinung nach auch ein international koordinierter Ausstieg aus der Kernenergie in Betracht gezogen werden“, ergänzt der Atmosphärenchemiker.

Ansprechpartner

Prof. Dr. Johannes Lelieveld
Max-Planck-Institut für Chemie
Telefon: +49 6131 305-458
Fax: +49 6131 305-436
Email: jos.lelieveld@­mpic.de
Dr. Susanne Benner
Max-Planck-Institut für Chemie
Telefon: +49 6131 305-3000
Fax: +49 6131 305-3009
Email: susanne.benner@­mpic.de
Originalveröffentlichung
Jos Lelieveld, Daniel Kunkel and Mark G. Lawrence
Global risk of radioactive fallout after nuclear reactor accidents
Atmospheric Chemistry and Physics, 12. Mai 2012; doi:10.5194/acp-12-4245-2012

Prof. Dr. Johannes Lelieveld | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5809185/Kernenergie_nuklearer_Gau

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics