Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der nukleare GAU ist wahrscheinlicher als gedacht

22.05.2012
Westeuropa trägt das weltweit höchste Risiko einer radioaktiven Kontamination durch schwere Reaktorunfälle

Katastrophale nukleare Unfälle wie die Kernschmelzen in Tschernobyl und Fukushima sind häufiger zu erwarten als bislang angenommen.


Weltweite Wahrscheinlichkeit einer radioaktiven Kontamination: Die Karte gibt in Prozent an, wie hoch die jährliche Wahrscheinlichkeit einer radioaktiven Verseuchung von über 40 Kilobecquerel pro Quadratmeter ist. In Westeuropa liegt sie bei etwa zwei Prozent in einem Jahr. © Daniel Kunkel, MPI für Chemie, 2011

Wissenschaftler des Max-Planck-Instituts für Chemie in Mainz haben anhand der bisherigen Laufzeiten aller zivilen Kernreaktoren weltweit und der aufgetretenen Kernschmelzen errechnet, dass solche Ereignisse im momentanen Kraftwerksbestand etwa einmal in 10 bis 20 Jahren auftreten können und damit 200 mal häufiger sind als in der Vergangenheit geschätzt. Zudem ermittelten die Forscher, dass die Hälfte des radioaktiven Cäsium-137 bei einem solchen größten anzunehmenden Unfall mehr als 1.000 Kilometer weit transportiert würde.

Die Ergebnisse zeigen, dass Westeuropa – inklusive Deutschland – wahrscheinlich einmal in etwa 50 Jahren mit mehr als 40 Kilobecquerel radioaktivem Cäsium-137 pro Quadratmeter belastet wird. Ab dieser Menge gilt ein Gebiet laut der Internationalen Atomenergie Behörde IAEA als radioaktiv kontaminiert. Die Forscher fordern aufgrund ihrer Erkenntnisse eine tiefgehende Analyse und Neubetrachtung der Risiken, die von Kernkraftwerken ausgehen.

Die Reaktorkatastrophe in Fukushima hat weltweit Zweifel an der Kernenergie geschürt und in Deutschland den Ausstieg aus der Kernenergie angestoßen. Dass das Risiko einer solchen Katastrophe höher ist als bislang angenommen, belegt nun eine Studie von Forschern um Jos Lelieveld, Direktor am Max-Planck-Institut für Chemie in Mainz: „Nach Fukushima habe ich mich gefragt, wie groß die Wahrscheinlichkeit ist, dass ein solcher Unfall wieder passiert, und ob wir die Verbreitung der Radioaktivität mit unseren Atmosphärenmodellen berechnen können.“ Den Ergebnissen der Untersuchung zufolge, dürfte es einmal in 10 bis 20 Jahren zu einer Kernschmelze in einem der derzeit aktiven Reaktoren kommen. Momentan sind weltweit 440 Kernreaktoren in Betrieb, 60 weitere befinden sich in Planung.

Um die Wahrscheinlichkeit einer Kernschmelze zu ermitteln, stellten die Mainzer Forscher eine einfache Rechnung an: Sie teilten die Laufzeit aller Kernreaktoren weltweit von der Inbetriebnahme des ersten zivilen Reaktors bis heute durch die Zahl der bisherigen Kernschmelzen. Die Laufzeit der Reaktoren summiert sich auf 14.500 Jahre; die Zahl der Kernschmelzen beträgt vier – eine in Tschernobyl und drei in Fukushima. Daraus ergibt sich, dass es in 3.625 Reaktorjahren zu einem GAU kommt, dem größten anzunehmenden Unfall wie ihn die Internationalen Bewertungsskala für nukleare Ereignisse (International Nuclear Event Scale, INES) definiert. Selbst wenn man dieses Ergebnis auf einen GAU in 5.000 Reaktorjahren aufrundet, um das Risiko konservativ abzuschätzen, liegt das Risiko 200mal höher als Schätzungen der US-amerikanischen Zulassungskommission für Kernreaktoren im Jahr 1990 ergaben.

Ein Viertel der radioaktiven Partikel wird weiter als 2.000 Kilometer transportiert

Für ihre Studien unterschieden die Mainzer Forscher nicht, wie alt ein Kernreaktor ist, um welchen Typ es sich handelt oder ob er beispielsweise in einem besonders erdbebengefährdeten Gebiet steht. So tragen sie der Tatsache Rechnung, dass es auch in einem vermeintlich sicheren Reaktor zu einer Kernschmelze kommen kann – nicht zuletzt, weil sich nicht alle möglichen Ursachen eines solchen fatalen Unfalls vorhersehen lassen. Schließlich hatte auch die Reaktorkatastrophe in Japan niemand für möglich gehalten.

Nun bestimmten die Forscher die geografische Verteilung von radioaktiven Gasen und Partikeln rund um eine mögliche Unglücksstelle mit Hilfe eines Computermodells, das die Erdatmosphäre beschreibt. Das Atmosphärenchemie-Modell berechnet meteorologische Größen sowie chemische Reaktionen in der Atmosphäre. Anhand des Modells kann man beispielsweise die globale Verteilung von Spurengasen berechnen und es daher auch für Voraussagen zur Verbreitung von radioaktiven Gasen und Partikeln nutzen. Um die radioaktive Verseuchung näherungsweise zu ermitteln, berechneten die Forscher, wie sich Partikel des radioaktiven Cäsium-137 (137Cs) in der Atmosphäre verbreiten und wo sie in welchen Mengen über den Niederschlag in den Boden gelangen. Das 137Cs-Isotop entsteht als Zerfallsprodukt bei einer Kernspaltung von Uran, es hat eine Halbwertszeit von 30 Jahren und bildete nach den Havarien von Tschernobyl und Fukushima einen wichtigen Teil der radioaktiven Belastung.

Die Simulation der Mainzer Forscher ergab, dass durchschnittlich nur acht Prozent der 137Cs-Emission in einem Umkreis von 50 Kilometern um ein verunglücktes Kernkraftwerk nieder gehen. Ungefähr 50 Prozent der Teilchen würde innerhalb von 1.000 Kilometern abgelagert, und etwa 25 Prozent würde sogar weiter als 2.000 Kilometer transportiert. Diese Ergebnisse belegen, dass Reaktorunfälle weit über Staatsgrenzen hinweg radioaktive Verseuchung herbeiführen können.

Westeuropa trägt weltweit das höchste Risiko einer radioaktiven Kontamination

Die Ergebnisse der Transportrechnungen kombinierten die Forscher mit der ermittelten Wahrscheinlichkeit einer Kernschmelze und der tatsächlichen Reaktordichte in der Welt, um zu bestimmen, wie oft eine radioaktive Kontamination droht. Laut Definition der Internationalen Atomenergie Behörde IAEA gilt ein Gebiet mit mehr als 40 Kilobecquerel Radioaktivität pro Quadratmeter als kontaminiert. Zum Vergleich: Nach dem Unglück von Tschernobyl belastete der radioaktive Niederschlag von Cäsium-137 den Boden in Deutschland mit bis zu 40 Kilobecquerel pro Quadratmeter.

Wie das Mainzer Team nun feststellte, droht eine Verseuchung mit mehr als 40 Kilobecquerel pro Quadratmeter in Westeuropa, wo die Reaktordichte sehr hoch ist, durchschnittlich einmal in 50 Jahren. Im weltweiten Vergleich tragen die Bürger im dicht besiedelten Südwestdeutschland durch die zahlreichen Kernkraftwerke an den Grenzen von Frankreich, Belgien und Deutschland das höchste Risiko einer radioaktiven Kontamination.

In Westeuropa wären bei einer einzigen Kernschmelze durchschnittlich 28 Millionen Menschen von einer Kontamination mit mehr als 40 Kilobecquerel pro Quadratmeter betroffen. Noch höher ist diese Zahl in Südasien. Ein schwerer nuklearer Unfall würde dort etwa 34 Millionen Menschen betreffen, im Osten der USA und in Ostasien wären es 14 bis 21 Millionen Menschen.

„Der Ausstieg Deutschlands aus der Kernenergie verringert zwar das nationale Risiko einer radioaktiven Verseuchung. Deutlich geringer wäre die Gefährdung, wenn auch Deutschlands Nachbarn ihre Reaktoren abschalteten“, resümiert Jos Lelieveld. „Notwendig ist nicht nur eine tiefgehende und öffentlich zugängliche Analyse der tatsächlichen Risiken, die von Kernkraftwerken ausgehen. Vor dem Hintergrund unserer Erkenntnisse sollte meiner Meinung nach auch ein international koordinierter Ausstieg aus der Kernenergie in Betracht gezogen werden“, ergänzt der Atmosphärenchemiker.

Ansprechpartner

Prof. Dr. Johannes Lelieveld
Max-Planck-Institut für Chemie
Telefon: +49 6131 305-458
Fax: +49 6131 305-436
Email: jos.lelieveld@­mpic.de
Dr. Susanne Benner
Max-Planck-Institut für Chemie
Telefon: +49 6131 305-3000
Fax: +49 6131 305-3009
Email: susanne.benner@­mpic.de
Originalveröffentlichung
Jos Lelieveld, Daniel Kunkel and Mark G. Lawrence
Global risk of radioactive fallout after nuclear reactor accidents
Atmospheric Chemistry and Physics, 12. Mai 2012; doi:10.5194/acp-12-4245-2012

Prof. Dr. Johannes Lelieveld | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5809185/Kernenergie_nuklearer_Gau

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics