Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nützliche von schädlichen Pilzen unterscheiden

15.07.2011
Von der symbiotischen Gemeinschaft profitieren beide: Von ihren Wirtspflanzen holen sich die Arbuskulären Mykorrhiza-Pilze (AM-Pilze) Kohlehydrate aus der Fotosynthese, dafür versorgen sie diese mit Stickstoff oder Phosphat.

Nährstoffe, die für die Pflanze schwer zugänglich sind. Pflanzenpathogene, also krank machende Pilze schädigen dagegen ihre Wirtspflanze. Wie es Pflanzen gelingt, zwischen „Freund“ und „Feind“ zu unterscheiden, hat ein Team des Botanischen Instituts am KIT untersucht. Die Ergebnisse sind in der Fachzeitschrift „Current Biology“ erschienen.


Nur im Zellkern aktiv: Gekoppelt an ein grün fluoreszierendes Protein leuchtet „SP7“ unter dem UV-Licht auf (links), andere Proteine verteilen sich gleichmäßig (rechts). (Abb. Botanisches Institut).

Seit Millionen von Jahren geschieht es direkt unter dem Boden: das Wechselspiel zwischen Pilzen und Pflanzen. Dank der mikroskopisch kleinen Organismen, den arbuskulären Mykorrhiza-Pilzen (AM-Pilzen), gedeiht die Pflanze, ihr Wachstum verbessert sich. Pflanzenpathogene Pilze sind die „bösen Brüder“ dieser AM-Pilze: Sie vermehren sich auf Kosten ihres Wirtes, schädigen die Pflanze oder töten sie sogar. Wie gelingt es der Pflanze zwischen Freund und Feind zu unterscheiden? Warum gibt es bei der Kolonisierung durch die AM-Pilze keine der typischen Abwehrreaktionen der Pflanze, wie sie bei pathogenen Pilzen zu beobachten sind? Diesen Fragen ging die Arbeitsgruppe „Pflanzen-Mikroben-Interaktionen“ um Professorin Natalia Requena am Botanischen Institut des KIT nach. Die Wissenschaftlerinnen konnten zeigen, dass AM-Pilze in der Lage sind, mit ihrem Pflanzenpartner zu kommunizieren. Hierbei wirkt ein vom Pilz abgesondertes Protein als Signalstoff.

Die Forschergruppe konnte so zeigen, dass dieses Protein von den pflanzlichen Zellen aufgenommen wird, in den Zellkernen mit einem Protein der Pflanze interagiert und dadurch das zelluläre Programm des Pflanzenpartners „umschreibt“. Auf diese Weise kann der Pilz die Auslösung von Verteidigungsmechanismen unterdrücken. Moleküle, die eine derartige Umwandlung bewirken, heißen Effektoren. In zahlreichen pathogenen Mikroorganismen wurden solche Proteine bereits entdeckt und in ihrer Funktion erforscht. Jedoch konnte nie zuvor gezeigt werden, dass auch symbiotische Pilze auf diesen Mechanismus zurückgreifen um ihren Wirt zu beeinflussen. Das von Requenas Forschergruppe entdeckte Protein „SP7“ ist somit der bisher einzige für AM-Pilze beschriebene Effektor. Diese Erkenntnis kann zu einem besseren Verständnis dieser nützlichen Symbiose führen und so möglicherweise den Weg für einen verbesserten Einsatz von AM-Pilzen in der nachhaltigen Landwirtschaft ebnen.

„Die Schwierigkeit in der Arbeit mit AM-Pilzen liegt darin, dass die Pilze sich nur zusammen mit ihrem Pflanzenpartner kultivieren lassen. Das macht es schwierig, Pilz-Material in ausreichenden Mengen für die Analyse zu gewinnen“, sagt Silke Kloppholz vom Botanischen Institut. Zudem war es bisher nicht möglich, AM-Pilze genetisch zu manipulieren. Viele molekularbiologische Standardverfahren waren für diese Pilze damit nicht anwendbar. Natalia Requena und ihre Mitarbeiter mussten daher zunächst bestehende Methoden optimieren, um das Pilzmaterial trotz der geringen Menge erfolgreich untersuchen zu können. Zudem nutzen sie Umwege wie die genetische Manipulation des Pflanzenpartners oder andere genetisch zugängliche Pilzen, um mehr über die Funktion des Pilz-Proteins in der Pflanze zu erfahren.

Literatur:
Kloppholz et al., A Secreted Fungal Effector of Glomus intraradices Promotes Symbiotic Biotrophy, Current Biology (2011), doi:10.1016/j.cub.2011.06.044

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Margarete Lehné
Presse, Kommunikation und
Marketing
Tel.: +49 721 608-48121
Fax: +49 721 608-43658
E-Mail: margarete.lehne@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie