Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Notch-Code geknackt - Epigenetischer Kontrollmechanismus entdeckt

25.03.2015

Epigenetischer Kontrollmechanismus des Notch-Signalwegs und -Onkogens entdeckt.

Der Notch-Signalweg gehört zu den wichtigsten entwicklungsbiologischen Signalwegen. Ist er gestört, kommt es nicht nur zu Fehlbildungen bei der Embryonalentwicklung, sondern auch Blutkrebs kann dadurch ausgelöst werden.


Die Aufnahme oben ist von einer Krallenfroschkaulquappe nach normaler Embryonalentwicklung. Das Bild in der Mitte (Notch-wt) zeigt dramatische Fehlbildungen, die durch die Methylierung des Notch-Prote

Foto: W. Cizelsky

Wissenschaftler der Universität Ulm und Gießen haben nun entdeckt, dass der Notch-Signalweg über die Methylierung des Notch-Proteins kontrolliert wird, und damit einen zentralen epigenetischen Kontrollmechanismus für diesen Signalweg aufgeklärt. Publiziert wurden die Ergebnisse im renommierten Fachmagazin Science Signaling.

Die Entwicklung eines Organismus aus einer befruchteten Eizelle wird in seiner ganzen Komplexität durch eine überraschend kleine Zahl von Signalkaskaden gesteuert. Eine dieser entwicklungsbiologisch relevanten Signalübertragungsketten ist der so genannte Notch-Signalweg. Dieser sorgt dafür, dass entwicklungsspezifische Signale von der Zelloberfläche in den Zellkern „transportiert“ werden. So werden wiederum spezifische Genprogramme aktiviert, die die Entwicklung bestimmter Zellen, Gewebe und Organe steuern.

„Genetische Veränderungen, die für diesen Signalweg und die darin eingebundenen Proteine codieren, haben schwerwiegende Folgen für den ganzen Organismus“, so Professor Franz Oswald von der Klinik für Innere Medizin I am Universitätsklinikum Ulm. Notch-Mutationen, die beispielsweise den Abbau des Notch-Rezeptorproteins stören, gehören zu den häufigsten Ursachen der akuten lymphoblastischen Leukämie.

Forscherinnen und Forscher der Universität Ulm, des Max-Planck-Instituts für Immunbiologie und Epigenetik, der Justus-Liebig-Universität Gießen und der Uni Jena haben nun gemeinsam einen bisher unbekannten Regulationsmechanismus entschlüsselt, der die Funktionalität des Notch-Proteins und die damit verbundene Wirkung als Onkogen entscheidend beeinflusst. Publiziert wurden die Forschungsergebnisse in der renommierten Fachzeitschrift „Science Signaling“.

„Das Besondere am Notch-Signalweg ist sein Rezeptor. Denn sobald ein Ligand einer anderen Zelle an dieses Protein bindet und so den Signalübertragungsmechanismus auslöst, kommt es zur Spaltung des Rezeptors. Dann bahnt sich ein Teil dieses Proteins als so genannte intrazelluläre Domäne den Weg in den Zellkern, um dort direkt als Transkriptionsfaktor zu wirken und so die Expression bestimmter Gene zu steuern", schildert Oswald die ungewöhnliche Arbeitsweise dieses Signalweges.

Das Forscherteam hat nun herausgefunden, dass sich durch die Methylierung des Notch-Proteins dessen Aktivität und Stabilität wesentlich beeinflussen lässt, wodurch sich auch die Genexpression und damit zusammenhängende Entwicklungsprozesse maßgeblich verändert. Unter Methylierung versteht man eine Übertragung von Methylgruppen an bestimmte Aminosäurereste eines Proteins, die von speziellen Protein-Methyltransferasen katalysiert wird. Bestimmte Methyltransferasen können über sogenannte Chromatinmodifikationen die Genexpression sogar direkt beeinflussen.

Mit Hilfe von in vivo Studien mit Zebrafischembryonen und Krallenfroschkaulquappen konnten die Wissenschaftler eindrucksvoll demonstrieren, dass das Notch-Protein selbst durch die Methyltransferase CARM1 methyliert wird. Bleibt der Notch-Signalweg durch die Methylierung des Notch-Proteins während der Embryonalentwicklung dauerhaft aktiviert, führt dies zu dramatischen Fehlbildungen der Augen, der Muskulatur und im Kopfbereich.

Die Wissenschaftler konnten zeigen, dass sich die Aktivität des Signalweges auf ein normales Maß herunterregulieren lässt, wenn man ein Notch-Protein in die Tiere einbringt, das nicht mehr methyliert werden kann. Auch die Fehlbildungen zeigten sich dadurch weitaus weniger ausgeprägt.

„Wir konnten also zeigen, dass die Genexpression über den Notch-Signalweg epigenetisch kontrolliert wird. Das heißt, durch die Methylierung der intrazellulären Domäne von Notch kommt es zu weiteren posttranslationalen Veränderungen am Chromatin, die sich entscheidend auf die Embryonalentwicklung auswirken“, erklärt Professor Tilman Borggrefe vom Institut für Biochemie der Justus-Liebig-Universität Gießen. Eine wichtige Rolle spielt bei dieser Art der Regulation, die nicht direkt am Genom angreift, das Chromatin und die so genannten Histonproteine, über die die DNA verpackt wird.

Darauf aufbauend konnten die Forscher ein mathematisches Modell entwickeln, das die Stärke und Dauer eines Notch-Signals berechnet, und mit dessen Hilfe die Wirkung von Notch-Modifikationen am Computer simuliert und vorhergesagt werden kann. „Die enge Verbindung zwischen empirischer und mathematisch-modellierender Forschung wird in Zukunft noch an Bedeutung gewinnen“, ist der Systembiologie-Experte Professor Hans Armin Kestler vom Leibniz-Institut für Altersforschung Fitz-Lipmann-Institut (FLI) Jena überzeugt.

Mit der engen Zusammenarbeit von Molekularbiologen und Systembiologen könnten Forschungsergebnisse in einen größeren systemischen Zusammenhang gestellt und komplexe biologische Abläufe besser verstanden werden. Nicht zuletzt mit dem langfristigen Ziel, Interventionsstrategien und entsprechende Medikamente zu entwickeln, die beispielsweise im Fall gestörter Notch-Signalwege die Entstehung von Blutkrebs verhindern könnten.

Text: Prof. Franz Oswald/Andrea Weber-Tuckermann

Weitere Informationen
Prof. Dr. Franz Oswald, Email: franz.oswald@uni-ulm.de; Tel.: 0731 / 500 44544

Weitere Informationen:

http://stke.sciencemag.org/content/8/369/ra30.abstract

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie