Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Notch-Code geknackt - Epigenetischer Kontrollmechanismus entdeckt

25.03.2015

Epigenetischer Kontrollmechanismus des Notch-Signalwegs und -Onkogens entdeckt.

Der Notch-Signalweg gehört zu den wichtigsten entwicklungsbiologischen Signalwegen. Ist er gestört, kommt es nicht nur zu Fehlbildungen bei der Embryonalentwicklung, sondern auch Blutkrebs kann dadurch ausgelöst werden.


Die Aufnahme oben ist von einer Krallenfroschkaulquappe nach normaler Embryonalentwicklung. Das Bild in der Mitte (Notch-wt) zeigt dramatische Fehlbildungen, die durch die Methylierung des Notch-Prote

Foto: W. Cizelsky

Wissenschaftler der Universität Ulm und Gießen haben nun entdeckt, dass der Notch-Signalweg über die Methylierung des Notch-Proteins kontrolliert wird, und damit einen zentralen epigenetischen Kontrollmechanismus für diesen Signalweg aufgeklärt. Publiziert wurden die Ergebnisse im renommierten Fachmagazin Science Signaling.

Die Entwicklung eines Organismus aus einer befruchteten Eizelle wird in seiner ganzen Komplexität durch eine überraschend kleine Zahl von Signalkaskaden gesteuert. Eine dieser entwicklungsbiologisch relevanten Signalübertragungsketten ist der so genannte Notch-Signalweg. Dieser sorgt dafür, dass entwicklungsspezifische Signale von der Zelloberfläche in den Zellkern „transportiert“ werden. So werden wiederum spezifische Genprogramme aktiviert, die die Entwicklung bestimmter Zellen, Gewebe und Organe steuern.

„Genetische Veränderungen, die für diesen Signalweg und die darin eingebundenen Proteine codieren, haben schwerwiegende Folgen für den ganzen Organismus“, so Professor Franz Oswald von der Klinik für Innere Medizin I am Universitätsklinikum Ulm. Notch-Mutationen, die beispielsweise den Abbau des Notch-Rezeptorproteins stören, gehören zu den häufigsten Ursachen der akuten lymphoblastischen Leukämie.

Forscherinnen und Forscher der Universität Ulm, des Max-Planck-Instituts für Immunbiologie und Epigenetik, der Justus-Liebig-Universität Gießen und der Uni Jena haben nun gemeinsam einen bisher unbekannten Regulationsmechanismus entschlüsselt, der die Funktionalität des Notch-Proteins und die damit verbundene Wirkung als Onkogen entscheidend beeinflusst. Publiziert wurden die Forschungsergebnisse in der renommierten Fachzeitschrift „Science Signaling“.

„Das Besondere am Notch-Signalweg ist sein Rezeptor. Denn sobald ein Ligand einer anderen Zelle an dieses Protein bindet und so den Signalübertragungsmechanismus auslöst, kommt es zur Spaltung des Rezeptors. Dann bahnt sich ein Teil dieses Proteins als so genannte intrazelluläre Domäne den Weg in den Zellkern, um dort direkt als Transkriptionsfaktor zu wirken und so die Expression bestimmter Gene zu steuern", schildert Oswald die ungewöhnliche Arbeitsweise dieses Signalweges.

Das Forscherteam hat nun herausgefunden, dass sich durch die Methylierung des Notch-Proteins dessen Aktivität und Stabilität wesentlich beeinflussen lässt, wodurch sich auch die Genexpression und damit zusammenhängende Entwicklungsprozesse maßgeblich verändert. Unter Methylierung versteht man eine Übertragung von Methylgruppen an bestimmte Aminosäurereste eines Proteins, die von speziellen Protein-Methyltransferasen katalysiert wird. Bestimmte Methyltransferasen können über sogenannte Chromatinmodifikationen die Genexpression sogar direkt beeinflussen.

Mit Hilfe von in vivo Studien mit Zebrafischembryonen und Krallenfroschkaulquappen konnten die Wissenschaftler eindrucksvoll demonstrieren, dass das Notch-Protein selbst durch die Methyltransferase CARM1 methyliert wird. Bleibt der Notch-Signalweg durch die Methylierung des Notch-Proteins während der Embryonalentwicklung dauerhaft aktiviert, führt dies zu dramatischen Fehlbildungen der Augen, der Muskulatur und im Kopfbereich.

Die Wissenschaftler konnten zeigen, dass sich die Aktivität des Signalweges auf ein normales Maß herunterregulieren lässt, wenn man ein Notch-Protein in die Tiere einbringt, das nicht mehr methyliert werden kann. Auch die Fehlbildungen zeigten sich dadurch weitaus weniger ausgeprägt.

„Wir konnten also zeigen, dass die Genexpression über den Notch-Signalweg epigenetisch kontrolliert wird. Das heißt, durch die Methylierung der intrazellulären Domäne von Notch kommt es zu weiteren posttranslationalen Veränderungen am Chromatin, die sich entscheidend auf die Embryonalentwicklung auswirken“, erklärt Professor Tilman Borggrefe vom Institut für Biochemie der Justus-Liebig-Universität Gießen. Eine wichtige Rolle spielt bei dieser Art der Regulation, die nicht direkt am Genom angreift, das Chromatin und die so genannten Histonproteine, über die die DNA verpackt wird.

Darauf aufbauend konnten die Forscher ein mathematisches Modell entwickeln, das die Stärke und Dauer eines Notch-Signals berechnet, und mit dessen Hilfe die Wirkung von Notch-Modifikationen am Computer simuliert und vorhergesagt werden kann. „Die enge Verbindung zwischen empirischer und mathematisch-modellierender Forschung wird in Zukunft noch an Bedeutung gewinnen“, ist der Systembiologie-Experte Professor Hans Armin Kestler vom Leibniz-Institut für Altersforschung Fitz-Lipmann-Institut (FLI) Jena überzeugt.

Mit der engen Zusammenarbeit von Molekularbiologen und Systembiologen könnten Forschungsergebnisse in einen größeren systemischen Zusammenhang gestellt und komplexe biologische Abläufe besser verstanden werden. Nicht zuletzt mit dem langfristigen Ziel, Interventionsstrategien und entsprechende Medikamente zu entwickeln, die beispielsweise im Fall gestörter Notch-Signalwege die Entstehung von Blutkrebs verhindern könnten.

Text: Prof. Franz Oswald/Andrea Weber-Tuckermann

Weitere Informationen
Prof. Dr. Franz Oswald, Email: franz.oswald@uni-ulm.de; Tel.: 0731 / 500 44544

Weitere Informationen:

http://stke.sciencemag.org/content/8/369/ra30.abstract

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie