Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

NMR-Spektroskopie an großen Proteinen: Neue Perspektiven für die Entwicklung von Antibiotika

05.06.2015

Wie müssen Antibiotika beschaffen sein, damit Bakterien nicht dagegen resistent werden? Die Forschungsgruppe um Prof. Dr. Paul Rösch an der Universität Bayreuth ist bei der Beantwortung dieser Frage einen grundlegenden Schritt vorangekommen.

Erstmals konnten das riesige Protein RNA-Polymerase und seine Wechselwirkungspartner mithilfe der magnetischen Kernresonanzspektroskopie (NMR-Spektroskopie) im Detail untersucht werden. Die Ergebnisse sind jetzt in "Scientific Reports" veröffentlicht.


Kleine und mittelgroße Proteine binden an die bakterielle RNA-Polymerase.

Grafik: Dr. Stefan Knauer, Universität Bayreuth. Auf Anfrage können detailliertere Abbildungen zur Verfügung gestellt werden.

Weitere Erkenntnisse versprechen sich die Forscher von einem weltweit einzigartigen 1 GHz-Spektrometer mit aktiv abgeschirmtem Magnetfeld, das in Kürze auf dem Bayreuther Campus installiert wird.

Aktuell gehört zu den größten Herausforderungen der Medizin die Abwehr von Bakterien, gegen die alle derzeit zur Verfügung stehenden Antibiotika unwirksam sind. Die meisten dieser Antibiotika richten sich gegen bakterielle Zellwände und deren Bestandteile, oder sie stören die Synthese bakterieller Proteine. Neuere Antibiotika wiederum richten sich gegen das Kopieren von bakteriellen Erbinformationen.

Die Problematik ist dabei die gleiche: Einige Bakterien entwickeln Mechanismen, die sie gegen diese – eigentlich tödlichen – Substanzen schützt. Sie werden resistent. Eine Chance, dieser Situation Herr zu werden, liegt für die Medizin in der Entwicklung neuartiger Wirkstoffe, die grundlegende Prozesse in der bakteriellen Zelle unterbrechen.

Ein Beispiel für einen solchen Prozess ist die Übersetzung der Erbinformation, die in der DNA gespeichert ist, in eine RNA-Sequenz. Hierbei handelt es sich um eine für die Proteinherstellung verwertbare Form der Erbinformation. Der als Transkription bezeichnete Übersetzungsprozess, der durch die RNA Polymerase (RNAP) katalysiert wird, ist hoch komplex und wird durch andere bakterielle Proteine, die an die RNAP binden, präzise gesteuert. Viele Details dieser bakteriellen Übersetzungsmaschinerie sind derzeit noch unbekannt. Genauere Kenntnisse könnten aber eines Tages die gezielte Konstruktion von Wirkstoffen erlauben, die genau diese Maschinerie lahmlegen – und die Bakterien daran hindern, resistent zu werden.

Erstmals NMR-spektroskopisch untersucht: die Wechselwirkung von kleinen Proteinen mit intakter RNAP

An genau diesem Punkt setzen die NMR-spektroskopischen Untersuchungen der Forschungsgruppe um Prof. Dr. Paul Rösch an, die zu den neuen, in "Scientific Reports" – einer Zeitschrift der "Nature Publishing Group" – veröffentlichten Ergebnissen geführt haben. Die räumlichen, dreidimensionalen Strukturen der an der Transkription beteiligten Moleküle sind bereits durch Röntgenstrukturanalyse und Elektronenmikroskopie untersucht worden. Im Vergleich zu diesen Techniken zeichnet sich die NMR-Spektroskopie aber dadurch aus, dass Wechselwirkungen von Molekülen und die Dynamik von Molekülstrukturen relativ einfach zu untersuchen sind. Gerade solche Prozesse spielen eine entscheidende Rolle bei der Transkription. Daher ist ihr Verständnis unabdingbar für die gezielte Entwicklung von Antibiotika.

Mit NMR-Spektroskopie sind nur bestimmte, nicht-radioaktive Atomsorten (Isotope) detektierbar, die durch molekularbiologische Methoden in Proteine eingebracht werden. Diese Isotope dienen als Sonden und ermöglichen wichtige Einblicke in molekulare Strukturen sowie in die Veränderungen, denen diese Strukturen unterliegen. Bislang konnte die NMR-Spektroskopie vorwiegend nur bei kleinen und mittelgroßen Proteinen eingesetzt werden. Die Bayreuther Arbeitsgruppe hat aber nun Wege gefunden, das sehr große und hoch komplexe Molekül RNAP der Untersuchung durch NMR-Spektroskopie zugänglich zu machen.

Die Bayreuther Wissenschaftler haben sich eine spezielle Technik zunutze gemacht, um ausschließlich bestimmte, sehr bewegliche Gruppen von Atomen, die nur in einzelnen Proteinbausteinen vorkommen, molekularbiologisch in definierter Art und Weise mit NMR-aktiven Isotopen zu markieren. Diese Gruppen waren trotz der Proteingröße beobachtbar und dienten den Wissenschaftlern als Sonden im Gesamtprotein. Gleichzeitig gelang es, die fünf Untereinheiten, aus denen die RNAP aufgebaut ist, einzeln herzustellen, individuell zu markieren und anschließend das Gesamtprotein wieder zusammenzusetzen. So konnte auch spezifisch eine einzelne Untereinheit innerhalb der gesamten RNAP detektiert werden.

In einem ersten Experiment konnte so gezeigt werden, an welche der Untereinheiten bestimmte Proteine binden. In einem zweiten Schritt wird zurzeit mittels eines analogen Markierungsverfahrens bestimmt, wie die Kontaktflächen zwischen den Bindeproteinen und der RNAP aussehen.

Grundlagen für die gezielte Entwicklung neuer Wirkstoffe

„Mit den von uns entwickelten Verfahren wollen wir die Wechselwirkungen zwischen der bakteriellen RNAP und kleineren Proteinen, die daran binden, so präzise wie möglich untersuchen. Zusammen mit unseren bereits veröffentlichten Erkenntnissen über das Zusammenspiel der Transkription mit der Proteinbiosynthese werden wir so ein gutes Bild davon erhalten, wie bakterielle Regulationsprozesse ablaufen. Vor allem werden wir Aufschluss darüber gewinnen, wie sich diese Prozesse von den entsprechenden Mechanismen im Menschen unterscheiden. Wir erwarten, dass sich auf dieser Basis neue Antibiotika entwerfen lassen, gegen die Bakterien nicht resistent werden können“, erklärt der Bayreuther Arbeitsgruppenleiter Dr. Stefan Knauer. Wie neue Wirkstoffe aussehen könnten, die das bakterielle System stören, aber das menschliche unbeeinflusst lassen, könne mit dem neuen Forschungsansatz weiter aufgeklärt werden.

NMR-Spektroskopie lässt auch die Untersuchung sehr großer Proteine zu

In Zusammenhang mit ihren NMR-spektroskopischen Untersuchungen ist den Bayreuther Strukturbiologen also ein Novum geglückt: Die erfolgreiche Anwendung der NMR-Spektroskopie auf ein sehr großes, aus unterschiedlichen Untereinheiten aufgebautes, multimeres Protein. „Wenn es darum geht, die Struktur von Proteinen dieser Größe zu bestimmen, wird sich die NMR-Spektroskopie auch in naher Zukunft nicht mit Elektronenmikroskopie und Röntgenstrukturanalyse messen können. Wir konnten mit unserer Arbeit aber zeigen, dass sich die Stärken der NMR-Spektroskopie, nämlich die Untersuchung von molekularen Interaktionen und molekularer Dynamik, auch auf sehr große Molekülkomplexe anwenden lassen“, erklärt Prof. Dr. Paul Rösch, Leiter des Lehrstuhls für Biopolymere und Direktor des Forschungszentrums für Bio-Makromoleküle der Universität Bayreuth. „Ein wesentlicher Durchbruch bei der Erforschung dieser hochmolekularen Komplexe wird die Installation des weltweit ersten 1 GHz-Spektrometers mit abgeschirmten Magneten an der Universität Bayreuth sein. Die Abschirmung des Magneten dient dazu, äußere Einflüsse auf die Messergebnisse zu minimieren“, so Prof. Rösch. Für seine Forschungen zu Allergenen und Antibiotika ist ihm vor kurzem der Ludwig-Schaefer-Preis der amerikanischen Columbia University verliehen worden.

Veröffentlichung:

Johanna Drögemüller, Martin Strauß, Kristian Schweimer, Birgitta M. Wöhrl, Stefan H. Knauer and Paul Rösch,
Exploring RNA polymerase regulation by NMR spectroscopy.
Scientific Reports, June 2015. DOI: 10.1038/srep10825

Kontakt:

Prof. Dr. Paul Rösch
Lehrstuhl für Biopolymere
Direktor des Forschungszentrums für Bio-Makromoleküle (BIOmac)
Universität Bayreuth
95440 Bayreuth
Tel. +49 (0)921 55-3540
E-Mail: roesch@unibt.de

Dr. Stefan Knauer
Lehrstuhl für Biopolymere
Universität Bayreuth
95440 Bayreuth
Tel. +49 (0)921 55-3868
E-Mail: stefan.knauer@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik