Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

NMR-Spektroskopie an großen Proteinen: Neue Perspektiven für die Entwicklung von Antibiotika

05.06.2015

Wie müssen Antibiotika beschaffen sein, damit Bakterien nicht dagegen resistent werden? Die Forschungsgruppe um Prof. Dr. Paul Rösch an der Universität Bayreuth ist bei der Beantwortung dieser Frage einen grundlegenden Schritt vorangekommen.

Erstmals konnten das riesige Protein RNA-Polymerase und seine Wechselwirkungspartner mithilfe der magnetischen Kernresonanzspektroskopie (NMR-Spektroskopie) im Detail untersucht werden. Die Ergebnisse sind jetzt in "Scientific Reports" veröffentlicht.


Kleine und mittelgroße Proteine binden an die bakterielle RNA-Polymerase.

Grafik: Dr. Stefan Knauer, Universität Bayreuth. Auf Anfrage können detailliertere Abbildungen zur Verfügung gestellt werden.

Weitere Erkenntnisse versprechen sich die Forscher von einem weltweit einzigartigen 1 GHz-Spektrometer mit aktiv abgeschirmtem Magnetfeld, das in Kürze auf dem Bayreuther Campus installiert wird.

Aktuell gehört zu den größten Herausforderungen der Medizin die Abwehr von Bakterien, gegen die alle derzeit zur Verfügung stehenden Antibiotika unwirksam sind. Die meisten dieser Antibiotika richten sich gegen bakterielle Zellwände und deren Bestandteile, oder sie stören die Synthese bakterieller Proteine. Neuere Antibiotika wiederum richten sich gegen das Kopieren von bakteriellen Erbinformationen.

Die Problematik ist dabei die gleiche: Einige Bakterien entwickeln Mechanismen, die sie gegen diese – eigentlich tödlichen – Substanzen schützt. Sie werden resistent. Eine Chance, dieser Situation Herr zu werden, liegt für die Medizin in der Entwicklung neuartiger Wirkstoffe, die grundlegende Prozesse in der bakteriellen Zelle unterbrechen.

Ein Beispiel für einen solchen Prozess ist die Übersetzung der Erbinformation, die in der DNA gespeichert ist, in eine RNA-Sequenz. Hierbei handelt es sich um eine für die Proteinherstellung verwertbare Form der Erbinformation. Der als Transkription bezeichnete Übersetzungsprozess, der durch die RNA Polymerase (RNAP) katalysiert wird, ist hoch komplex und wird durch andere bakterielle Proteine, die an die RNAP binden, präzise gesteuert. Viele Details dieser bakteriellen Übersetzungsmaschinerie sind derzeit noch unbekannt. Genauere Kenntnisse könnten aber eines Tages die gezielte Konstruktion von Wirkstoffen erlauben, die genau diese Maschinerie lahmlegen – und die Bakterien daran hindern, resistent zu werden.

Erstmals NMR-spektroskopisch untersucht: die Wechselwirkung von kleinen Proteinen mit intakter RNAP

An genau diesem Punkt setzen die NMR-spektroskopischen Untersuchungen der Forschungsgruppe um Prof. Dr. Paul Rösch an, die zu den neuen, in "Scientific Reports" – einer Zeitschrift der "Nature Publishing Group" – veröffentlichten Ergebnissen geführt haben. Die räumlichen, dreidimensionalen Strukturen der an der Transkription beteiligten Moleküle sind bereits durch Röntgenstrukturanalyse und Elektronenmikroskopie untersucht worden. Im Vergleich zu diesen Techniken zeichnet sich die NMR-Spektroskopie aber dadurch aus, dass Wechselwirkungen von Molekülen und die Dynamik von Molekülstrukturen relativ einfach zu untersuchen sind. Gerade solche Prozesse spielen eine entscheidende Rolle bei der Transkription. Daher ist ihr Verständnis unabdingbar für die gezielte Entwicklung von Antibiotika.

Mit NMR-Spektroskopie sind nur bestimmte, nicht-radioaktive Atomsorten (Isotope) detektierbar, die durch molekularbiologische Methoden in Proteine eingebracht werden. Diese Isotope dienen als Sonden und ermöglichen wichtige Einblicke in molekulare Strukturen sowie in die Veränderungen, denen diese Strukturen unterliegen. Bislang konnte die NMR-Spektroskopie vorwiegend nur bei kleinen und mittelgroßen Proteinen eingesetzt werden. Die Bayreuther Arbeitsgruppe hat aber nun Wege gefunden, das sehr große und hoch komplexe Molekül RNAP der Untersuchung durch NMR-Spektroskopie zugänglich zu machen.

Die Bayreuther Wissenschaftler haben sich eine spezielle Technik zunutze gemacht, um ausschließlich bestimmte, sehr bewegliche Gruppen von Atomen, die nur in einzelnen Proteinbausteinen vorkommen, molekularbiologisch in definierter Art und Weise mit NMR-aktiven Isotopen zu markieren. Diese Gruppen waren trotz der Proteingröße beobachtbar und dienten den Wissenschaftlern als Sonden im Gesamtprotein. Gleichzeitig gelang es, die fünf Untereinheiten, aus denen die RNAP aufgebaut ist, einzeln herzustellen, individuell zu markieren und anschließend das Gesamtprotein wieder zusammenzusetzen. So konnte auch spezifisch eine einzelne Untereinheit innerhalb der gesamten RNAP detektiert werden.

In einem ersten Experiment konnte so gezeigt werden, an welche der Untereinheiten bestimmte Proteine binden. In einem zweiten Schritt wird zurzeit mittels eines analogen Markierungsverfahrens bestimmt, wie die Kontaktflächen zwischen den Bindeproteinen und der RNAP aussehen.

Grundlagen für die gezielte Entwicklung neuer Wirkstoffe

„Mit den von uns entwickelten Verfahren wollen wir die Wechselwirkungen zwischen der bakteriellen RNAP und kleineren Proteinen, die daran binden, so präzise wie möglich untersuchen. Zusammen mit unseren bereits veröffentlichten Erkenntnissen über das Zusammenspiel der Transkription mit der Proteinbiosynthese werden wir so ein gutes Bild davon erhalten, wie bakterielle Regulationsprozesse ablaufen. Vor allem werden wir Aufschluss darüber gewinnen, wie sich diese Prozesse von den entsprechenden Mechanismen im Menschen unterscheiden. Wir erwarten, dass sich auf dieser Basis neue Antibiotika entwerfen lassen, gegen die Bakterien nicht resistent werden können“, erklärt der Bayreuther Arbeitsgruppenleiter Dr. Stefan Knauer. Wie neue Wirkstoffe aussehen könnten, die das bakterielle System stören, aber das menschliche unbeeinflusst lassen, könne mit dem neuen Forschungsansatz weiter aufgeklärt werden.

NMR-Spektroskopie lässt auch die Untersuchung sehr großer Proteine zu

In Zusammenhang mit ihren NMR-spektroskopischen Untersuchungen ist den Bayreuther Strukturbiologen also ein Novum geglückt: Die erfolgreiche Anwendung der NMR-Spektroskopie auf ein sehr großes, aus unterschiedlichen Untereinheiten aufgebautes, multimeres Protein. „Wenn es darum geht, die Struktur von Proteinen dieser Größe zu bestimmen, wird sich die NMR-Spektroskopie auch in naher Zukunft nicht mit Elektronenmikroskopie und Röntgenstrukturanalyse messen können. Wir konnten mit unserer Arbeit aber zeigen, dass sich die Stärken der NMR-Spektroskopie, nämlich die Untersuchung von molekularen Interaktionen und molekularer Dynamik, auch auf sehr große Molekülkomplexe anwenden lassen“, erklärt Prof. Dr. Paul Rösch, Leiter des Lehrstuhls für Biopolymere und Direktor des Forschungszentrums für Bio-Makromoleküle der Universität Bayreuth. „Ein wesentlicher Durchbruch bei der Erforschung dieser hochmolekularen Komplexe wird die Installation des weltweit ersten 1 GHz-Spektrometers mit abgeschirmten Magneten an der Universität Bayreuth sein. Die Abschirmung des Magneten dient dazu, äußere Einflüsse auf die Messergebnisse zu minimieren“, so Prof. Rösch. Für seine Forschungen zu Allergenen und Antibiotika ist ihm vor kurzem der Ludwig-Schaefer-Preis der amerikanischen Columbia University verliehen worden.

Veröffentlichung:

Johanna Drögemüller, Martin Strauß, Kristian Schweimer, Birgitta M. Wöhrl, Stefan H. Knauer and Paul Rösch,
Exploring RNA polymerase regulation by NMR spectroscopy.
Scientific Reports, June 2015. DOI: 10.1038/srep10825

Kontakt:

Prof. Dr. Paul Rösch
Lehrstuhl für Biopolymere
Direktor des Forschungszentrums für Bio-Makromoleküle (BIOmac)
Universität Bayreuth
95440 Bayreuth
Tel. +49 (0)921 55-3540
E-Mail: roesch@unibt.de

Dr. Stefan Knauer
Lehrstuhl für Biopolymere
Universität Bayreuth
95440 Bayreuth
Tel. +49 (0)921 55-3868
E-Mail: stefan.knauer@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften