Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

nMLF-Nervenzellen machen Fische schneller

25.07.2014

Laufen wir eine Straße entlang, können wir gemächlich schlendern, schnell gehen oder rennen. Die dafür notwendigen abwechselnden Bewegungen der Beine werden von speziellen Nervenzellansammlungen im Rückenmark kontrolliert. Woher diese zentralen Mustergeneratoren (ZMG) wissen, wie schnell die Beine bewegt werden müssen, ist unklar.

Wissenschaftler der Harvard Universität und des Max-Planck-Instituts für Neurobiologie in Martinsried fanden nun einzelne Nervenzellen im Hirn von Zebrafischlarven, die ihre Schwimmgeschwindigkeit steuern. Auch menschliche Bewegungen werden über ZMG gesteuert. Dank dieser Ergebnisse lässt sich besser verstehen, wie das Gehirn rhythmische Bewegungen moduliert.


Nervenzellen der Netzhaut (grün) schicken ihre Verbindungen von den Augen (gelb) ins Gehirn der Zebrafischlarve. In Rot erscheinen die Zellen, die Gehirn und Rückenmark miteinander verbinden.

(c) MPI für Neurobiologie / Portugues

Schon in früher Kindheit lernen wir, die Füße in einem gleichmäßigen Rhythmus voreinander zu setzen. Einmal gelernt, sorgen kleine Nervenzellansammlungen im Rückenmark, die zentralen Mustergeneratoren (ZMG), dafür, dass diese Abfolge nahezu automatisch läuft: Wir müssen nicht bei jedem Schritt neu überlegen, wann und wie weit wir den nächsten Fuß setzen. Einmal in Gang gesetzt schicken die ZMG-Nervenzellen ihre Impulse auch ohne weitere Anstöße. Doch wie werden diese Zellen angeregt und wie teilt ihnen das Gehirn mit, wie schnell die Beine bewegt werden müssen?

Fische mit Viergang-Getriebe

Ruben Portugues und seine Kollegen haben an Zebrafischlarven untersucht, wie Gehirn und ZMG miteinander verbunden sind. Die Tiere verfügen über verschiedene Methoden, um ihre Geschwindigkeit zu erhöhen: Sie können länger mit ihrem Schwanz schlagen, den Schwanz stärker bewegen, die Zeit zwischen den Perioden mit Schwanzbewegungen verkürzen oder in einen ganz anderen Bewegungsrhythmus oder Gang wechseln – ähnlich einem Pferd, das von Trab in den Galopp wechselt.

Um zu verstehen, wie das Gehirn diese verschiedenen Schwimmarten auslöst, konzentrierten sich die Neurobiologen auf eine Gruppe von zirka 20 Nervenzellen, die ihre Fortsätze vom Mittelhirn ins Rückenmark aussenden. Es war bekannt, dass die Zellen dieser nMLF-Region während des Schwimmens aktiv sind. Nun konnten die Wissenschaftler zeigen, dass das Stimulieren dieser Zellen Schwimmbewegungen ausgelöst.

Wie die Forscher nun im Fachjournal Neuron berichten, erhalten die Zellen des zentralen Mustergenerators den ersten Anstoß für eine Bewegung somit von Nervenzellen der nMLF-Region. Zudem fanden sie heraus, dass es den Fischen zudem nahezu unmöglich ist, ihre Schwimmgeschwindigkeit zu verändern, wenn vier bestimmte nMLF-Zellen ausgeschaltet werden.

Nicht mehr sondern vermehrte Aktivität

Die Aktivität von Nervenzellen kann mit Hilfe von Kalzium-empfindlichen Farbstoffen sichtbar gemacht werden. Da Zebrafischlarven durchsichtig sind, konnten die Wissenschaftler die Aktivität einzelner nMLF-Zellen direkt durch das Mikroskop beobachten. "Richtig spannend wurde es, als die Tiere dann zwischen den verschiedenen Geschwindigkeiten wechselten", berichtet Ruben Portugues, der seit kurzem eine Forschungsgruppe am Max-Planck-Institut für Neurobiologie leitet. "Wir hatten eigentlich erwartet, dass für schnelleres Schwimmen einfach mehr nMLF-Zellen gleichzeitig aktiv sind."

Stattdessen fanden die Wissenschaftler heraus, dass bereits aktive Nervenzellen beim schnelleren Schwimmen noch aktiver werden. "Wie eine höhere Aktivität im Detail zu schnelleren Bewegungen führt, wissen wir noch nicht", so Portugues. Die Wissenschaftler konnten jedoch zeigen, dass einzelne nMLF-Zellen, die sogenannten MeLR-Zellen, die Länge der Schwimmphasen und sogenannte MeLc-Zellen die Schlagfrequenz des Schwanzes steuern. Bisher waren die nMLF-Region und ihre Zellen zwar bekannt, doch niemand wusste, was sie steuern oder wie sie dies tun. "Nun, da wir sozusagen das Getriebe für die Schwimmbewegungen gefunden haben, ist die nächste Frage wie und wo das Gehirn entscheidet, welchen Gang es einlegen möchte", fasst Ruben Portugues die nächste Herausforderung zusammen.

Originalveröffentlichung:
Kristen Severi*, Ruben Portugues*, Joao Marques, Donald O'Malley, Michael Orger, Florian Engert (*gleichrangiger Beitrag)
Neural control and modulation of swimming speed in the larval zebrafish
Neuron, 24. Juli 2014

Kontakt:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de

Dr. Ruben Portugues
Max-Planck-Forschungsgruppe Sensomotorische Kontrolle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3492
Email: rportugues@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des MPI für Neurobiologie
http://www.neuro.mpg.de/portugues/de - Webseite der Gruppe von Dr. Ruben Portugues

Dr. Stefanie Merker | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise