Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

nMLF-Nervenzellen machen Fische schneller

25.07.2014

Laufen wir eine Straße entlang, können wir gemächlich schlendern, schnell gehen oder rennen. Die dafür notwendigen abwechselnden Bewegungen der Beine werden von speziellen Nervenzellansammlungen im Rückenmark kontrolliert. Woher diese zentralen Mustergeneratoren (ZMG) wissen, wie schnell die Beine bewegt werden müssen, ist unklar.

Wissenschaftler der Harvard Universität und des Max-Planck-Instituts für Neurobiologie in Martinsried fanden nun einzelne Nervenzellen im Hirn von Zebrafischlarven, die ihre Schwimmgeschwindigkeit steuern. Auch menschliche Bewegungen werden über ZMG gesteuert. Dank dieser Ergebnisse lässt sich besser verstehen, wie das Gehirn rhythmische Bewegungen moduliert.


Nervenzellen der Netzhaut (grün) schicken ihre Verbindungen von den Augen (gelb) ins Gehirn der Zebrafischlarve. In Rot erscheinen die Zellen, die Gehirn und Rückenmark miteinander verbinden.

(c) MPI für Neurobiologie / Portugues

Schon in früher Kindheit lernen wir, die Füße in einem gleichmäßigen Rhythmus voreinander zu setzen. Einmal gelernt, sorgen kleine Nervenzellansammlungen im Rückenmark, die zentralen Mustergeneratoren (ZMG), dafür, dass diese Abfolge nahezu automatisch läuft: Wir müssen nicht bei jedem Schritt neu überlegen, wann und wie weit wir den nächsten Fuß setzen. Einmal in Gang gesetzt schicken die ZMG-Nervenzellen ihre Impulse auch ohne weitere Anstöße. Doch wie werden diese Zellen angeregt und wie teilt ihnen das Gehirn mit, wie schnell die Beine bewegt werden müssen?

Fische mit Viergang-Getriebe

Ruben Portugues und seine Kollegen haben an Zebrafischlarven untersucht, wie Gehirn und ZMG miteinander verbunden sind. Die Tiere verfügen über verschiedene Methoden, um ihre Geschwindigkeit zu erhöhen: Sie können länger mit ihrem Schwanz schlagen, den Schwanz stärker bewegen, die Zeit zwischen den Perioden mit Schwanzbewegungen verkürzen oder in einen ganz anderen Bewegungsrhythmus oder Gang wechseln – ähnlich einem Pferd, das von Trab in den Galopp wechselt.

Um zu verstehen, wie das Gehirn diese verschiedenen Schwimmarten auslöst, konzentrierten sich die Neurobiologen auf eine Gruppe von zirka 20 Nervenzellen, die ihre Fortsätze vom Mittelhirn ins Rückenmark aussenden. Es war bekannt, dass die Zellen dieser nMLF-Region während des Schwimmens aktiv sind. Nun konnten die Wissenschaftler zeigen, dass das Stimulieren dieser Zellen Schwimmbewegungen ausgelöst.

Wie die Forscher nun im Fachjournal Neuron berichten, erhalten die Zellen des zentralen Mustergenerators den ersten Anstoß für eine Bewegung somit von Nervenzellen der nMLF-Region. Zudem fanden sie heraus, dass es den Fischen zudem nahezu unmöglich ist, ihre Schwimmgeschwindigkeit zu verändern, wenn vier bestimmte nMLF-Zellen ausgeschaltet werden.

Nicht mehr sondern vermehrte Aktivität

Die Aktivität von Nervenzellen kann mit Hilfe von Kalzium-empfindlichen Farbstoffen sichtbar gemacht werden. Da Zebrafischlarven durchsichtig sind, konnten die Wissenschaftler die Aktivität einzelner nMLF-Zellen direkt durch das Mikroskop beobachten. "Richtig spannend wurde es, als die Tiere dann zwischen den verschiedenen Geschwindigkeiten wechselten", berichtet Ruben Portugues, der seit kurzem eine Forschungsgruppe am Max-Planck-Institut für Neurobiologie leitet. "Wir hatten eigentlich erwartet, dass für schnelleres Schwimmen einfach mehr nMLF-Zellen gleichzeitig aktiv sind."

Stattdessen fanden die Wissenschaftler heraus, dass bereits aktive Nervenzellen beim schnelleren Schwimmen noch aktiver werden. "Wie eine höhere Aktivität im Detail zu schnelleren Bewegungen führt, wissen wir noch nicht", so Portugues. Die Wissenschaftler konnten jedoch zeigen, dass einzelne nMLF-Zellen, die sogenannten MeLR-Zellen, die Länge der Schwimmphasen und sogenannte MeLc-Zellen die Schlagfrequenz des Schwanzes steuern. Bisher waren die nMLF-Region und ihre Zellen zwar bekannt, doch niemand wusste, was sie steuern oder wie sie dies tun. "Nun, da wir sozusagen das Getriebe für die Schwimmbewegungen gefunden haben, ist die nächste Frage wie und wo das Gehirn entscheidet, welchen Gang es einlegen möchte", fasst Ruben Portugues die nächste Herausforderung zusammen.

Originalveröffentlichung:
Kristen Severi*, Ruben Portugues*, Joao Marques, Donald O'Malley, Michael Orger, Florian Engert (*gleichrangiger Beitrag)
Neural control and modulation of swimming speed in the larval zebrafish
Neuron, 24. Juli 2014

Kontakt:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de

Dr. Ruben Portugues
Max-Planck-Forschungsgruppe Sensomotorische Kontrolle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3492
Email: rportugues@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des MPI für Neurobiologie
http://www.neuro.mpg.de/portugues/de - Webseite der Gruppe von Dr. Ruben Portugues

Dr. Stefanie Merker | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie