Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nitrat als Antitranspirant

18.05.2011
Steigende Pegel von Nitrat und dem Hormon Abscisinsäure signalisieren einer Pflanze, dass sie Wasser sparen sollte. Wie entfalten die beiden Botenstoffe ihre Wirkung? Die Pflanzenforscher Rainer Hedrich und Dietmar Geiger von der Uni Würzburg haben es geklärt.

Trocknet der Boden aus, müssen Pflanzen ihren Wasserverbrauch einschränken. Dazu produzieren sie in der Wurzel das Hormon Abscisinsäure und schicken es über das Leitungssystem in die Blätter. Dort sorgt das Hormon im Verbund mit Nitrat dafür, dass die Blattporen sich schließen und kein wertvolles Wasser mehr verdunstet.

Über die Blattporen verlieren Pflanzen einen Großteil ihres Wassers. Verzichten können sie auf die Poren aber nicht, denn ohne sie wäre kein Austausch von Kohlendioxid und anderen Gasen mit der Umgebung möglich – und damit auch keine Photosynthese und kein Wachstum. Also müssen Pflanzen die Öffnungsweite der Blattporen bedarfsgerecht regulieren.

Schließzellen regulieren Weite der Blattporen

Ob die Blattporen zu oder auf sind, hängt von den bohnenförmigen Schließzellen ab. Sie sitzen in der Haut der Blätter; jeweils zwei von ihnen liegen sich gegenüber. Sind die Schließzellen prall mit Ionen und Wasser gefüllt, weichen sie auseinander und öffnen die Pore. Erschlaffen sie, wird die Pore immer kleiner, bis das Wasserdampf-Ventil am Ende ganz geschlossen ist.

Bei Trockenheit sind die Schließzellen der Zielort für das Hormon Abscisinsäure: „Wenn es dort ankommt, bindet es an seinen Rezeptor, der wiederum über zwei Enzyme den Anionenkanal SLAC1 reguliert“, sagt Professor Rainer Hedrich. Die Folge: Ionen und Wasser fließen aus den Schließzellen hinaus. Sie lassen gewissermaßen Druck ab, so dass die Poren sich schließen und die Wasserverdunstung aus den Blättern eingeschränkt wird.

Publikation in „Science Signaling“

Neue Erkenntnisse zu diesem Regulationsmechanismus stellen Professor Rainer Hedrich und Dr. Dietmar Geiger vom Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg in der aktuellen Ausgabe der renommierten Fachzeitschrift „Science Signaling“ vor. Detailliert beschreiben sie die Natur des Anionenkanals SLAC1 sowie des neu entdeckten Anionenkanals SLAH3. Seine Besonderheit: Zur Aktivierung braucht er sowohl Abscisinsäure als auch Nitrat.

Nitrat als Co-Botenstoff der Abscisinsäure

Nitrat ist vor allem als Bestandteil landwirtschaftlicher Dünger bekannt. Pflanzen ziehen Nitrat aus dem Boden, transportieren es in die Blätter und nutzen es dort als Stickstoffquelle für die Produktion von Proteinen. Dieser Prozess kommt richtig in Schwung, wenn die Photosynthese auf Hochtouren läuft – denn sie liefert das Kohlenstoffgerüst, das der Pflanze als Grundbaustein für Proteine dient. Wenn die Photosynthese gut läuft, können die Blätter auch viel Nitrat verarbeiten.

Von der Wurzel in die Blätter gelangt das Nitrat in Wasser gelöst. Den Nachschub an Nitrat kann die Pflanze auf den Bedarf abstimmen, indem sie den Wasserstrom steigert oder bremst. Dazu öffnet oder schließt sie ihre Ventile – dadurch kann sie die Sogwirkung regulieren, die das über die Blätter verdunstende Wasser bis in die Wurzel hinein ausübt.

Schließzellen messen Nitratgehalt im Blatt

„Damit diese Regulation funktioniert, müssen die Schließzellen dazu in der Lage sein, den Nitratgehalt in ihrer Umgebung zu messen“, sagt Professor Hedrich. Steigt der Nitratgehalt im Blatt stark an, zeigt das der Pflanze an, dass sie zurzeit nicht mehr Nitrat verarbeiten kann, weil die Photosynthese nicht optimal arbeitet. Sie kann also in diesem Moment auf Kohlendioxid verzichten, die Blattporen schließen und so Wasser sparen. Nitrat wirkt in diesem Fall wie ein Antitranspirant.

Als Sensor für diesen Prozess haben die Würzburger Biophysiker den Anionenkanal SLAH3 identifiziert: Übersteigt der Nitratgehalt in den Schließzellen eine bestimmte Schwelle und liegt gleichzeitig eine kritische Menge Abscisinsäure vor, wird der Kanal aktiviert und setzt das Schließen der Blattporen in Gang.

Anionenkanal als multi-sensorischer Regler

Hedrichs Fazit: „Dieser Anionenkanal ist eine multi-sensorische Schnittstelle. Er misst das Verhältnis von Wasserverbrauch, Nitratgehalt und Photosyntheseleistung der Pflanze, integriert die Messwerte und reguliert als Reaktion darauf den Öffnungszustand der Blattporen.“ So ermöglicht er es der Pflanze, bei Trockenheit den Wasserverlust möglichst gering zu halten, ohne gleichzeitig die Photosyntheseleistung allzu stark einzuschränken.

"Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1”, Dietmar Geiger, Tobias Maierhofer, Khaled A.S. AL-Rasheid, Sönke Scherzer, Patrick Mumm, Anja Liese, Peter Ache, Christian Wellmann, Irene Marten, Erwin Grill, Tina Romeis und Rainer Hedrich, Science Signaling, 17. Mai 2011, Vol. 4, Issue 173, DOI: 10.1126/scisignal.2001346

Kontakt
Prof. Dr. Rainer Hedrich, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de
Dr. Dietmar Geiger, T (0931) 31-86105, geiger@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie