Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nitrat als Antitranspirant

18.05.2011
Steigende Pegel von Nitrat und dem Hormon Abscisinsäure signalisieren einer Pflanze, dass sie Wasser sparen sollte. Wie entfalten die beiden Botenstoffe ihre Wirkung? Die Pflanzenforscher Rainer Hedrich und Dietmar Geiger von der Uni Würzburg haben es geklärt.

Trocknet der Boden aus, müssen Pflanzen ihren Wasserverbrauch einschränken. Dazu produzieren sie in der Wurzel das Hormon Abscisinsäure und schicken es über das Leitungssystem in die Blätter. Dort sorgt das Hormon im Verbund mit Nitrat dafür, dass die Blattporen sich schließen und kein wertvolles Wasser mehr verdunstet.

Über die Blattporen verlieren Pflanzen einen Großteil ihres Wassers. Verzichten können sie auf die Poren aber nicht, denn ohne sie wäre kein Austausch von Kohlendioxid und anderen Gasen mit der Umgebung möglich – und damit auch keine Photosynthese und kein Wachstum. Also müssen Pflanzen die Öffnungsweite der Blattporen bedarfsgerecht regulieren.

Schließzellen regulieren Weite der Blattporen

Ob die Blattporen zu oder auf sind, hängt von den bohnenförmigen Schließzellen ab. Sie sitzen in der Haut der Blätter; jeweils zwei von ihnen liegen sich gegenüber. Sind die Schließzellen prall mit Ionen und Wasser gefüllt, weichen sie auseinander und öffnen die Pore. Erschlaffen sie, wird die Pore immer kleiner, bis das Wasserdampf-Ventil am Ende ganz geschlossen ist.

Bei Trockenheit sind die Schließzellen der Zielort für das Hormon Abscisinsäure: „Wenn es dort ankommt, bindet es an seinen Rezeptor, der wiederum über zwei Enzyme den Anionenkanal SLAC1 reguliert“, sagt Professor Rainer Hedrich. Die Folge: Ionen und Wasser fließen aus den Schließzellen hinaus. Sie lassen gewissermaßen Druck ab, so dass die Poren sich schließen und die Wasserverdunstung aus den Blättern eingeschränkt wird.

Publikation in „Science Signaling“

Neue Erkenntnisse zu diesem Regulationsmechanismus stellen Professor Rainer Hedrich und Dr. Dietmar Geiger vom Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg in der aktuellen Ausgabe der renommierten Fachzeitschrift „Science Signaling“ vor. Detailliert beschreiben sie die Natur des Anionenkanals SLAC1 sowie des neu entdeckten Anionenkanals SLAH3. Seine Besonderheit: Zur Aktivierung braucht er sowohl Abscisinsäure als auch Nitrat.

Nitrat als Co-Botenstoff der Abscisinsäure

Nitrat ist vor allem als Bestandteil landwirtschaftlicher Dünger bekannt. Pflanzen ziehen Nitrat aus dem Boden, transportieren es in die Blätter und nutzen es dort als Stickstoffquelle für die Produktion von Proteinen. Dieser Prozess kommt richtig in Schwung, wenn die Photosynthese auf Hochtouren läuft – denn sie liefert das Kohlenstoffgerüst, das der Pflanze als Grundbaustein für Proteine dient. Wenn die Photosynthese gut läuft, können die Blätter auch viel Nitrat verarbeiten.

Von der Wurzel in die Blätter gelangt das Nitrat in Wasser gelöst. Den Nachschub an Nitrat kann die Pflanze auf den Bedarf abstimmen, indem sie den Wasserstrom steigert oder bremst. Dazu öffnet oder schließt sie ihre Ventile – dadurch kann sie die Sogwirkung regulieren, die das über die Blätter verdunstende Wasser bis in die Wurzel hinein ausübt.

Schließzellen messen Nitratgehalt im Blatt

„Damit diese Regulation funktioniert, müssen die Schließzellen dazu in der Lage sein, den Nitratgehalt in ihrer Umgebung zu messen“, sagt Professor Hedrich. Steigt der Nitratgehalt im Blatt stark an, zeigt das der Pflanze an, dass sie zurzeit nicht mehr Nitrat verarbeiten kann, weil die Photosynthese nicht optimal arbeitet. Sie kann also in diesem Moment auf Kohlendioxid verzichten, die Blattporen schließen und so Wasser sparen. Nitrat wirkt in diesem Fall wie ein Antitranspirant.

Als Sensor für diesen Prozess haben die Würzburger Biophysiker den Anionenkanal SLAH3 identifiziert: Übersteigt der Nitratgehalt in den Schließzellen eine bestimmte Schwelle und liegt gleichzeitig eine kritische Menge Abscisinsäure vor, wird der Kanal aktiviert und setzt das Schließen der Blattporen in Gang.

Anionenkanal als multi-sensorischer Regler

Hedrichs Fazit: „Dieser Anionenkanal ist eine multi-sensorische Schnittstelle. Er misst das Verhältnis von Wasserverbrauch, Nitratgehalt und Photosyntheseleistung der Pflanze, integriert die Messwerte und reguliert als Reaktion darauf den Öffnungszustand der Blattporen.“ So ermöglicht er es der Pflanze, bei Trockenheit den Wasserverlust möglichst gering zu halten, ohne gleichzeitig die Photosyntheseleistung allzu stark einzuschränken.

"Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1”, Dietmar Geiger, Tobias Maierhofer, Khaled A.S. AL-Rasheid, Sönke Scherzer, Patrick Mumm, Anja Liese, Peter Ache, Christian Wellmann, Irene Marten, Erwin Grill, Tina Romeis und Rainer Hedrich, Science Signaling, 17. Mai 2011, Vol. 4, Issue 173, DOI: 10.1126/scisignal.2001346

Kontakt
Prof. Dr. Rainer Hedrich, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de
Dr. Dietmar Geiger, T (0931) 31-86105, geiger@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik