Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Nilpferd im Fliegenkopf - Wuchernde Stammzellen verursachen Hirntumore

22.08.2011
In gesunden Larven der Fruchtfliege Drosophila „weiß“ das sich entwickelnde Gehirn, wann es groß genug ist. Bei Larven, die aufgrund einer Mutation das Protein L(3)mbt nicht bilden können, fehlt diese Wachstumskontrolle. Tödliche Hirntumore wuchern in ihren Köpfen. Die Geschwulste bestehen aus entarteten Stammzellen.

Forscher um Constance Richter und Jürgen Knoblich vom IMBA haben die Quelle für den Stammzellen-Wildwuchs gefunden: Ohne L(3)mbt-Protein sind spezielle DNA-Abschnitte nicht isoliert. Folglich geraten etliche Tumor-auslösende Gene außer Kontrolle. Ähnliche Maßlosigkeits-Mechanismen spielten vermutlich auch bei menschlichen Hirntumoren eine Rolle.


Exzess im Sehlappen: Wenn bei Drosophila-Larven das Protein L(3)mbt fehlt, bilden sich tödliche Hirntumore aus Stammzellen: Zuerst wachsen Neuroepithelien (rot) ohne Kontrolle. Aus ihnen gehen viel zu viele Stammzellen (blau) hervor. Das gesunde Gehirngewebe mit seinen Nervenzellen (grün) wird komplett überwuchert. Foto: IMBA

Maßlosigkeit gilt als Todsünde – auch in der Entwicklungsbiologie. Grenzenloses Gewebewachstum hat fatale Folgen, nämlich die abnorme Vergrößerung von Organen. Deswegen „weiß“ das sich entwickelnde Gehirn der Fruchtfliege Drosophila, wie lange es auf Expansionskurs gehen darf und wann ein Wachstumsstopp notwendig ist.

Ganz anders ist die Situation in Drosophila-Larven, bei denen das Gen l(3)mbt (l(3)mbt = lethal (3) malignant brain tumor) defekt ist. In diesen Mutanten wird kein L(3)mbt-Protein gebildet, Hirntumore wuchern. Zwar formiert sich auch bei diesen Tieren vorerst ein Neuroepithel in den Sehlappen des Gehirns – genau wie bei gesunden Larven. Aus dieser hauchdünnen Zellschicht sollten im Laufe der Entwicklung eine festgelegte Anzahl von Stammzellen sowie spezialisierte Nervenzellen hervorgehen. Letztere sorgen im Gehirn für die Verarbeitung von visueller Information.

Viel zu viele Stammzellen

Doch bei Fliegenlarven ohne L(3)mbt-Protein ist das strikt choreographierte Entwicklungsballett von Grund auf gestört, berichten Postdoc-Forscherin Constance Richter und Senior Scientist Jürgen Knoblich vom IMBA: Das Neuroepithel in den Sehlappen vergrößert sich zuerst extrem. Dann wandelt es sich in neurale Stammzellen (sog. Neuroblasten) um. Diese Zellmasse teilt sich unkontrolliert, und eine Geschwulst entsteht.

Die Folgen für die Fliegenlarven? Zuerst verzögert der aus Stammzellen bestehende Hirntumor „nur“ die Entwicklung. Doch innerhalb weniger Tage breitet er sich fast im ganzen Tier aus. Auch in den Anlagen für die späteren Flügel kommt es zu ungewöhnlichem Wachstum. Schließlich tötet der Tumor die Larve.

Ohne Maß und Ziel

Warum l(3)mbt-Mutanten zu derartiger Maßlosigkeit neigen, war bislang unbekannt. Dabei wollten es Constance Richter und Jürgen Knoblich nicht belassen. Vier Jahre lang untersuchten sie die kranken Fliegenlarven. Schließlich konnten die Forscher u. a. mit biochemischen, epigenetischen und bioinformatischen Methoden nachweisen, dass in den Mutanten der sog. Hippo-Signalübertragungsweg empfindlich gestört ist.

Dieses Informationsnetzwerk ist auch bei Maus und Mensch dafür verantwortlich, dass Organe wie Herz oder Leber ihre „richtige“ Größe einhalten. D. h. gerät der Hippo-Signalübertragungsweg durcheinander, kommt es zu ausuferndem Wachstum bzw. Tumorbildung. Nicht umsonst wurde das – für den Signalübertragungsweg namensgebende – hippo-Gen nach dem wuchtigen Nilfperd (engl. hippo) getauft.

Ordnung muss sein – durch Isolierung

Was passiert im Detail in den Fliegenlarven? Das Protein L(3)mbt ist, wie Richter und Knoblich herausgefunden haben, ein sog. Isolator. Es klammert sich an genau definierte DNA-Abschnitte. Folglich sorgt das Isolator-Protein im gesunden Tier für gezielte Abschirmung – und ein tumorfreies Gehirn. Denn dank Isolierung werden diverse Gene (z. B. yorkie, expanded oder bantam) nur zum richtigen Zeitpunkt ein- und ausgeschaltet sowie exakt stimuliert.

„Ohne das Isolator-Protein wächst das Neuroepithel völlig unkontrolliert. Auch die aus ihm hervorgehenden Stammzellen entziehen sich den äußeren Regulierungssignalen des Körpers. Das ist typisch für Tumore“, fasst Nachwuchswissenschafterin Constance Richter zusammen.

Von der Fliege lernen

Für Studienleiter Jürgen Knoblich sind die neuen Befunde besonders interessant, weil die Bildung des zentralen Nervensystems bei Drosophila und beim Säuger ähnlich verläuft. Die Tumorentstehung in der Fliege sei in Grundzügen durchaus auf den Menschen übertragbar. „Dass man vielleicht eines Tages auch mit Hilfe unserer Ergebnisse Krankheiten heilen kann, ist sehr motivierend“, sagt der Wissenschafter.

Bereits im Jahr 2006 konnte Jürgen Knoblich in einer viel beachteten Arbeit über einen anderen Stammzell-Tumor des Drosophila-Gehirns berichten; er entsteht beim Ausfall des Brat-Proteins. „Tumore von brat-Mutanten und von l(3)mbt-Mutanten sehen im erkrankten Tier gleich aus. Doch der Ursprungsmechanismus ist grundlegend verschieden“, so Knoblich. „Dies ist für Forscher interessant, die Medikamente für Hirntumor-Patienten entwickeln wollen. Möglicherweise sollten Tumore – auch wenn sie anatomisch und histologisch sehr ähnlich sind – aufgrund ihrer andersartigen Entstehungsgeschichte unterschiedlich behandelt werden“, folgert der Experte für Stammzellbiologie.

Tumor-Stammzellen als Krebs-Motor

Dafür, dass entartete Stammzellen nicht nur bei Drosophila fatal sein können, mehren sich den letzten Jahren die Hinweise. Laut Tumor-Stammzellhypothese sind genetisch veränderte Stammzellen (zumindest bei einigen) menschlichen Krebsformen der eigentliche Motor der Krankheit.

Allerdings sind gängige Krebs-Behandlungsformen (Chemotherapie, Bestrahlung) gegen ausdifferenzierte Zellen gerichtet, die sich rasch teilen und die Masse eines Tumors ausmachen. Die viel selteneren und oft lange „schlummernden“ Tumor-Stammzellen werden bei den Standardtherapien nicht nachhaltig attackiert. Dies wird als Ursache für Rückfälle und die Bildung von Metastasen interpretiert. Deswegen versuchen Krebsmediziner, Medikamente speziell gegen die Tumor-Stammzellen zu entwickeln bzw. Wege zu finden, um die entarteten Stammzellen umzuprogrammieren.

Originalarbeit
Die Originalarbeit „The tumor suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements“ (Autoren: Constance Richter, Katarzyna Oktaba, Jonas Steinmann, Jürg Müller und Jürgen Knoblich) erscheint am 21. August 2011 in der Zeitschrift Nature Cell Biology (advanced online).
Kooperationspartner
Die Arbeit entstand in Kooperation mit Katarzyna Oktaba und Jürg Müller (European Molecular Biology Laboratory, Heidelberg und Max-Planck-Institut für Biochemie, Martinsried).
CV Jürgen Knoblich
Jürgen Knoblich (*1963) ist seit 2004 Senior Scientist und stellvertretender wissenschaftlicher Direktor am Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften (IMBA). Seine Arbeitsgruppe beschäftigt sich mit Teilung sowie Wachstumskontrolle bei Stammzellen. 2009 wurde der gebürtige Deutsche mit dem Wittgenstein-Preis ausgezeichnet, die höchste österreichische Auszeichnung für Grundlagenforschung.
CV Constance Richter
Constance Richter (*1979) absolvierte ihr Biologiestudium mit hervorragenden Noten und machte dabei u. a Station in Marburg, Paris, Berlin und Boston. Danach kam die gebürtige Leipzigerin für ihre Dissertation ans IMBA. Ihr Doktorat schloss sie im Februar 2011 ab. Seither arbeitet sie als Postdoc in Jürgen Knoblichs Team.

Kontakte:

Corresponding Author
Dr. Jürgen Knoblich
Senior Scientist & stellv. wissenschaftlicher Direktor IMBA
Tel.: + 43 1 79044/4800
juergen.knoblich@imba.ac.at
Pressestelle IMBA
Mag. Evelyn Missbach, MAS
Tel.: +43 1 79730/3626
evelyn.missbach@imba.ac.at

Evelyn Missbach | idw
Weitere Informationen:
http://www.imba.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie