Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Nilhecht als Zitterwels?

14.03.2013
Fisch gibt Rätsel auf. Eine Art verzichtet auf Vorteile der Evolution.

Nilhechte haben sich an ihre Umgebung evolutionär angepasst. Sie verfügen über elektrische Organe und nutzen ihre – normalerweise – schwachelektrischen Entladungen für die Kommunikation und aktive Elektroortung.


Die Nilhecht-Art Mormyrus hasselquistii (Valenciennes, 1846).
Foto: Prof. Dr. Bernd Kramer

Nicht so die Nilhecht-Art Mormyrus hasselquistii (Valenciennes, 1846): Ihre elektrischen Entladungen sind so stark, dass eine Berührung für den Menschen durchaus schmerzhaft sein kann. Diese Beobachtung machte Prof. Dr. Bernd Kramer vom Institut für Zoologie der Universität Regensburg. Warum der Fisch damit scheinbar auf zahlreiche Vorteile verzichtet, will der Biologe nun klären.

Kramer machte seine Entdeckung im Rahmen einer Studie zum Körperbau verschiedener Nilhecht-Arten in Afrika. „Die elektrischen Entladungen dieser besonderen Nilhecht-Art erinnerten mich eher an die Energie eines Elektrozauns als an die bekannten Eigenschaften anderer, schwachelektrischer Nilhechte“, so Kramer.

Dabei erscheinen die starken Entladungen von Mormyrus hasselquistii auf den ersten Blick kontraproduktiv zu sein. Weder eine „private“ Kommunikation mit Artgenossen noch eine diskrete Elektroortung in der Umgebung sind auf diese Weise möglich. Auf der anderen Seite sind die Entladungen wiederum nicht stark genug, um sie bei der Jagd auf andere Fische als tödliche Elektroschocker einzusetzen.

Normalerweise achten Nilhechte sehr genau darauf, nicht durch auffälliges Verhalten potentielle Räuber in der Umgebung anzulocken. Sie sind zumeist nachtaktiv und weichen so dem Druck von tagaktiven Feinden aus. Kramer vermutet, dass die starken Entladungen von Mormyrus hasselquistii in diesem Zusammenhang als Abschreckung dienen, wobei die Nilhecht-Art mit einer Größe von bis zu 50 cm selbst verhältnismäßig kräftig gebaut ist.

Die Nilhecht-Art könnte davon profitieren, für den starkelektrischen Zitterwels (Malapterurus electricus Gmelin, 1789) gehalten zu werden, der schon als Winzling gefährliche Schläge austeilt und bis zu 120 cm lang wird. Er kommt in denselben Gewässern Westafrikas vor wie Mormyrus hasselquistii.

Was es genau mit dem „Zitter-Nilhecht“ auf sich hat, will Kramer in einer weiteren Untersuchung erforschen.

Die ersten Beobachtungen sind vor Kurzem in der renommierten Fachzeitschrift „African Journal of Aquatic Science“ veröffentlicht worden (DOI:10.2989/16085914.2012.745806).

Der Original-Artikel unter:
http://epub.uni-regensburg.de/27753/
Ansprechpartner für Medienvertreter:
Prof. Dr. Bernd Kramer
Universität Regensburg
Institut für Zoologie
Tel.: 0941 943-2263
Bernd.Kramer@biologie.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.biologie.uni-regensburg.de/Zoologie/Kramer/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics