Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nikotinabhängigkeit am „Zügel“

12.05.2011
MDC-Forscherinnen: Hirnregion Habenula spielt Schlüsselrolle

Dass Rauchen süchtig macht, ist offenbar auch genetisch bedingt. Eine Schlüsserolle spielt dabei eine Region im Zwischenhirn, die die Forscher Habenula (lat. für kleine Zügel) nennen.

Das haben jetzt Dr. Inés Ibañez-Tallon und ihre Mitarbeiter vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch zeigen können und den Mechanismus, der zur Sucht führt, erhellt (Neuron, 12. Mai 2011, Vol. 70, Issue 3, pp: 522-535; DOI 10.1016/j.neuron.2011.04.013)*.

Rauchen fordert jedes Jahr nach Schätzungen der Weltgesundheitsorganisaton WHO weltweit etwa fünf Millionen Tote. Viele von ihnen sterben an Lungenkrebs. „Vor zwei Jahren haben Studien gezeigt, dass genetische Veränderungen in einem bestimmten Gencluster Risikofaktoren für Nikotinabhängigkeit und Lungenkrebs sind“, betont Dr. Ibañez-Tallon.

Licht in diesen Mechanismus konnten die MDC-Forscherinnen jetzt in Zusammenarbeit mit dem Pasteur Institut in Paris, Frankreich, und der Russischen Akademie der Wissenschaften in Moskau, Russland, bringen.

Sie untersuchten einen spezifischen Rezeptor für den Botenstoff (Neurotransmitter) Aceytlcholin, der von diesem Gencluster gebildet wird, in Eizellen des Krallenfrosches (Xenobus laevis) sowie in transgenen Mäusen. Dieser Acytylcholinrezeptor wird unter anderem bei Rauchern von Nikotin aktiviert. Das Gencluster besteht aus drei Untergruppen, sprich drei Genen. „Obwohl es in der DNA jeder Zelle vorhanden ist, wird der Rezeptor nur in ganz wenigen Regionen des Gehirns ausgebildet. Eine davon ist die Habenula“, erläutert Dr. Ibañez-Tallon.

Ein Gen dieser Untergruppe ist alpha5. „Es ist bekannt, dass starke Raucher eine Punktmutation in diesem Gen haben. „Sie laufen eher Gefahr nikotinabhängig zu werden und Lungenkrebs zu entwickeln, als Menschen, die diese Genmutation nicht haben.“, sagt Dr. Ibañez-Tallon. Ein zweites Gen in dieser Untergruppe des Rezeptors ist das Gen beta4.

Starke Aversion gegen Nikotin
In transgenen Mäusen aktivierten die Forscherinnen das beta4 Gen, und es zeigte sich, dass diese Mäuse eine starke Aversion gegen Nikotin haben: Sie tranken nur Wasser ohne Nikotin. Schalteten sie in diesen Mäusen jedoch mit Hilfe eine Virus die mutierte Variante des alpha5-Gens an, hatten diese Mäuse bereits nach zwei Wochen ihren Widerwillen gegen Nikotin überwunden und tranken nur noch nikotinhaltiges Wasser. Dr. Ibañez-Tallon und ihre Mitarbeiter kommen deshalb zu dem Schluß, dass nur eine ausbalancierte Aktivität dieser beiden Gene den Nikotinverbrauch zügelt.
*Aversion to Nicotine Is Regulated by the Balanced Activity of b4 and a5 Nicotinic Receptor Subunits in the Medial Habenula
Silke Frahm,1 Marta A. Slimak,1 Leiron Ferrarese,1 Julio Santos-Torres,1 Beatriz Antolin-Fontes,1 Sebastian Auer,1 Sergey Filkin,3 Stéphanie Pons,5 Jean-Fred Fontaine,2 Victor Tsetlin,3 Uwe Maskos,4,5 and Inés Ibañez-Tallon1,*
1Department of Molecular Neurobiology, Max-Delbrück-Centrum, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
2Computational Biology and Data Mining Group, Max-Delbrück-Centrum, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
3Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
4Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, F-75724 Paris cedex 15, France
5CNRS, URA2182, F-75724 Paris cedex 15, France
*Correspondence: ibanezi@mdc-berlin.de
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
Weitere Informationen:
http://www.who.int/tobacco/statistics/tobacco_atlas/en/
http://www.who.int/tobacco/mpower/2009/a2_gtcr_report_summary.pdf
http://www.nature.com/nature/journal/v471/n7340/full/nature09797.html
http://www.cell.com/neuron/home

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics