Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nicht nur Dünger, sondern auch Kraftstoff

26.09.2014

Freiburger Forscher klären auf, wie ein stickstofffixierendes Enzym zusätzlich Kohlenwasserstoffe produziert

Zum Wachsen brauchen Pflanzen Stickstoff und Kohlenstoff. Dank der Photosynthese beziehen Pflanzen letzteren aus der Luft, doch Stickstoff müssen sie in Form von organischen Molekülen wie Ammoniak oder Harnstoff über die Wurzeln aufnehmen.


Einsle und sein Team entwickelten diese neue Kristallstruktur des Metallzentrums der Nitrogenase. Das Modell zeigt, wie Kohlenmonoxid (CO) ein Schwefelatom verdrängt.

(Quelle: Oliver Einsle)

Auch wenn Stickstoff 80 Prozent des Volumens der Erdatmosphäre ausmacht, kann die Pflanze erst in gebundener Form darauf zugreifen. In der Landwirtschaft wird deswegen Dünger verwendet, der Stickstoff für Pflanzen bereitstellt. Die einzigen Lebewesen, die Stickstoff aus der Luft in nutzbare Moleküle umwandeln können, sind Mikroorganismen – zum Beispiel Knöllchenbakterien.

Sie besitzen das Enzym Nitrogenase, das den Stickstoff mit Wasserstoff zu Ammonium verbindet. Prof. Dr. Oliver Einsle und Dr. Thomas Spatzal haben nicht nur die Funktionsweise des Enzyms weiter aufgeklärt, sondern auch einen einzigartigen Mechanismus beschrieben, mit dem es Kohlenwasserstoffe produziert.

„Wir wollen die Reaktionen in der Nitrogenase verstehen, um sie in Zukunft biotechnologisch nutzbar zu machen. Derzeit kann die Hälfte der Menschheit nur mit dem Einsatz von Düngemitteln in der Landwirtschaft ernährt werden. Das verbraucht etwa ein Prozent der Weltenergieproduktion“, erklärt Einsle.

Die Forscher zeigten zum ersten Mal, wie Nitrogenase Kohlenstoff mit Wasserstoff verbindet. Dabei entstehen Moleküle, die Biotreibstoffen ähneln. „Somit wird das Enzym auch für die nachhaltige Energieproduktion interessant“, so Einsle.

Einsle erforscht die Feinstruktur des Herzstücks des Enzyms: ein großes Metallzentrum namens Eisen-Molybdän-Cofaktor (FeMoco). Einsle, Spatzal, und Prof. Dr. Douglas Rees Pasadena/USA erstellten eine Kristallstruktur, die zeigt, wie ein Kohlenmonoxid-Molekül (CO) an FeMoco bindet.

„Dort verdrängt es unerwarteter Weise ein Schwefelatom, das vorher die gleiche Position in dem Metallzentrum besetzt hatte. Damit ergeben sich erstmals Rückschlüsse darauf, wie das Zentrum mit anderen Molekülen reagiert“, beschreibt Einsle die Ergebnisse, die in der Fachzeitschrift Science erscheinen.

„Eine derartige chemische Umlagerung wurde in einem biologischen System nie zuvor beobachtet“, erklärt Einsle weiter. Seit 2010 ist bekannt, dass CO die Nitrogenase hemmt und dass das Enzym das Gas in geringem Maße in Kohlenwasserstoffe umwandelt.

Indem die Forscher das Enzym während der Stickstoffreaktion mit CO begasten, fanden sie eine Bindestelle für CO und konnten die Umlagerung dokumentieren. Neben dem sogenannten „Haber-Bosch-Prozess der Stickstofffixierung“ fördert die Nitrogenase somit auch eine Reaktion, die der „Fischer-Tropsch-Synthese von Kohlenwasserstoffen“ entspricht, mit der großtechnisch Treibstoffe zum Beispiel aus Industrieabgasen nachhaltig synthetisiert werden können. „Die neue Strukturanalyse beschreibt erstmals den Mechanismus dieser ungewöhnlichen Reaktivität“, so Einsle.

Oliver Einsle ist Professor am Institut für Biochemie der Universität Freiburg und Mitglied des Exzellenzclusters BIOSS Centre for Biological Signalling Studies der Universität Freiburg. Thomas Spatzal hat seine Doktorarbeit in Freiburg beendet und forscht nun am California Institute of Technology, in Pasadena/USA mit Douglas Rees.

Originalpublikation:
Thomas Spatzal, Kathryn A. Perez, Oliver Einsle, James B. Howard, Douglas C. Rees (2014) Ligand binding to the FeMo-cofactor: Structures of CO-bound and reactivated nitrogenase. Science DOI: 10.1126/science.1256679
www.sciencemag.org/content/345/6204/1620.full

Mehr Informationen zur Forschung von Prof. Dr. Oliver Einsle erhalten Sie im uni'wissen-Artikel "Stickstoff aus Wurzeln", dem Wissensmagazin der Universität Freiburg.
www.pr.uni-freiburg.de/publikationen/uniwissen/uni-wissen-02-12-komplett-261112-rz-web.pdf

Kontakt:
Prof. Dr. Oliver Einsle
Institut für Biochemie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-6058
E-Mail: einsle@biochemie.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2014/pm.2014-09-26.100

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie