Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronenstreuung klärt auf, wie Myoglobin ohne Wasser auskommen kann

08.08.2012
Proteine können auch ohne wässrige Umgebung ihre grundlegenden biologischen Funktionen erfüllen.

Dies fanden Wissenschaftler vom Institut de Biologie Structurale (IBS) in Grenoble, der Universität Bristol, der australischen nationalen Universität, dem Institut Laue-Langevin und dem Jülicher Zentrum für Forschung mit Neutronen heraus. Das Team zeigte mit Hilfe der Technik der Neutronenstreuung, dass sich Myoglobin genau so bewegt, als ob es von Wasser umgeben wäre, wenn es in eine Hülle von Polymeren eingeschlossen ist. Die Ergebnisse machen Proteine zu einem entwicklungsfähigen Material für neue Wundverbände oder sogar chemische Gassensoren.

Proteine können auch ohne wässrige Umgebung ihre grundlegenden biologischen Funktionen erfüllen. Dies fanden Wissenschaftler vom Institut de Biologie Structurale (IBS) in Grenoble, der Universität Bristol, der australischen nationalen Universität, dem Institut Laue-Langevin und dem Jülicher Zentrum für Forschung mit Neutronen heraus. In einem im Journal of the American Chemical Society veröffentlichten Beitrag zeigte das Team mit Hilfe der Technik der Neutronenstreuung, dass sich Myoglobin genau so bewegt, als ob es von Wasser umgeben wäre, wenn es in eine Hülle von Polymeren eingeschlossen ist.

Myoglobin ist ein im Muskelgewebe von Wirbeltieren vorkommendes, Sauerstoff bindendes Protein. Diese Bewegungen sind für die Erfüllung der biologischen Funktionen eines Proteins wesentlich und die Ergebnisse machen Proteine zu einem entwicklungsfähigen Material für neue Wundverbände oder sogar chemische Gassensoren.

Wasser ist die natürliche Umgebung für lösliche Proteine sowie integraler Bestandteil ihrer Strukturen und ermöglicht es ihnen, ihre spezifischen Funktionen auszuführen. Jahrelang nahm man an, dass Proteine nur in Wasser oder einem anderen Lösungsmittel funktionieren. Im Jahr 2010 wies jedoch das Team aus Bristol nach, dass es durch Aufbringen von Polymerketten auf die Proteinoberfläche möglich war, lösungsmittel- und wasserfreie Myoglobinflüssigkeiten herzustellen, die trotzdem ihre biologische Rolle erfüllen konnten. Wissenschaftler haben nun gezeigt, dass die Proteindynamik die Ursache dafür ist.

Myoglobin tritt in beinahe allen Säugetieren auf und ist für die rote Farbe von rohem Fleisch verantwortlich. Wie bei allen löslichen Proteinen ist seine Oberfläche mit Wassermolekülen bedeckt. Mit dieser Untersuchung wollten Forscher herausfinden, ob sich die Proteinstruktur noch bewegen und weiterhin Sauerstoff binden kann, wenn alles Wasser vollständig entfernt und durch synthetische Moleküle ersetzt wurde.

Das Team untersuchte drei Proben: eine nasse Probe (Protein in Wasser), eine trockene Probe (dehydriertes Protein) und eine trockene Protein-Polymer-Hybrid-Probe, bei der die Wassermoleküle durch synthetisch hergestellte Polyethylen-Polymer-Oberflächenmoleküle auf der Basis von Glykol ersetzt wurden. Mit der sogenannten inkohärenten Neutronenstreuung am Institut Laue-Langevin im französischen Grenoble und am FRMII in Garching sowie des Zentrums für Forschung mit Neutronen in Jülich konnte das Team die Bewegungen im Protein und der Polymeroberfläche getrennt beobachten. Diese Trennung wurde möglich durch eine in einem speziellen Deuterierungslabor am ILL vorgenommene Markierung, bei der entweder die Polymer- oder die Proteinbewegungen dadurch maskiert wurden, dass man Wasserstoff durch sein schwereres Isotop Deuterium ersetzte. Sie fanden heraus, dass sich die von Polymeren umgebenen Myoglobinmoleküle genauso bewegten wie bei der nassen Probe und dass die trockene Probe sehr geringe Beweglichkeit zeigte.

Das Wissen, dass Proteine ohne Wasser funktionieren können, eröffnet vielfältige Anwendungen im täglichen Leben; denn nun ist klar, dass es Alternativen gibt, wenn kein Wasser verfügbar ist. Mögliche Anwendungen sind biochemische Gassensoren, weil Myoglobin Kohlenmonoxidmoleküle binden kann. Eine andere mögliche Anwendung ist die Entwicklung neuer Wundverbände. Bei diesen kann das flüssige Protein entweder intern oder extern zu der Wunde gelangen, um die Ausheilzeit zu verkürzen, indem es dem verletzten Gewebe Sauerstoff oder andere wesentliche Chemikalien zuführt.

„Diese Entdeckungen haben unser grundlegendes Verständnis von Proteinen und ihrem Verhalten erweitert, was viele neue Möglichkeiten für ihre Anwendung in industriellen Verfahren und in der Medizin eröffnet. Die Tatsache, dass unsere Proteine ihre Funktion erfreulicherweise auch ohne Wasser erfüllen können, das man für unentbehrlich für das Leben hielt, beweist, wie robust diese biologischen Nanomaschinen sind“, so Adam Perriman von der Universität Bristol.

„Neutronenstreuverfahren eignen sich hervorragend zur Untersuchung der Dynamik von Proteinen und ihrer Umgebung. Mit den Neutronenstreueinrichtungen am ILL und FRMII können wir die Bewegungen von Proteinen analysieren und damit die durch Kristallografie gewonnenen einzelnen Momentaufnahmen ihrer Strukturen ergänzen“, bemerkt Martin Weik vom Institut de Biologie Structurale.

Anfang dieses Monats wandten Martin Weik und seine Kollegen vom IBS, dem ILL, der Universität Kalifornien, dem australischen Institut für Wissenschaft und Technologie und dem Zentrum für Forschung mit Neutronen Jülich am FRMII diese Techniken auf ein intrinsisch ungeordnetes Protein (IDP), genannt Tau, an, um zu untersuchen und zu verstehen, wie sich seine Flexibilität und seine Wechselwirkungen mit Wasser von geordneten Proteinen wie z.B. Myoglobin unterscheiden.

Sie fanden heraus, dass das ungeordnete Tau-Protein sehr viel stärker an Wasserbewegungen koppelt als gefaltete Proteine. IDPs sind in einem medizinischen Kontext von großem Interesse, weil sie zusammenaggregieren und clustern können, um die Amyloidfibrillen bei neuro-degenerativen Krankheiten wie Parkinson und Alzheimer zu erzeugen. Während die geordnete Struktur gefalteter Proteine die Entwicklung von Arzneien ermöglicht, die in das Protein wie ein Schlüssel in ein Schloss passen, macht die konformationelle Veränderlichkeit eines intrinsisch ungeordneten Proteins wie des Tau dies schwieriger. Ein tieferes Verständnis ihrer Dynamik ist notwendig. Die Entdeckung starker Kopplung mit Wasserbewegungen ist ein großer Schritt vorwärts.

Arno Laxy | idw
Weitere Informationen:
http://www.ill.eu/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE