Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronenstreuung klärt auf, wie Myoglobin ohne Wasser auskommen kann

08.08.2012
Proteine können auch ohne wässrige Umgebung ihre grundlegenden biologischen Funktionen erfüllen.

Dies fanden Wissenschaftler vom Institut de Biologie Structurale (IBS) in Grenoble, der Universität Bristol, der australischen nationalen Universität, dem Institut Laue-Langevin und dem Jülicher Zentrum für Forschung mit Neutronen heraus. Das Team zeigte mit Hilfe der Technik der Neutronenstreuung, dass sich Myoglobin genau so bewegt, als ob es von Wasser umgeben wäre, wenn es in eine Hülle von Polymeren eingeschlossen ist. Die Ergebnisse machen Proteine zu einem entwicklungsfähigen Material für neue Wundverbände oder sogar chemische Gassensoren.

Proteine können auch ohne wässrige Umgebung ihre grundlegenden biologischen Funktionen erfüllen. Dies fanden Wissenschaftler vom Institut de Biologie Structurale (IBS) in Grenoble, der Universität Bristol, der australischen nationalen Universität, dem Institut Laue-Langevin und dem Jülicher Zentrum für Forschung mit Neutronen heraus. In einem im Journal of the American Chemical Society veröffentlichten Beitrag zeigte das Team mit Hilfe der Technik der Neutronenstreuung, dass sich Myoglobin genau so bewegt, als ob es von Wasser umgeben wäre, wenn es in eine Hülle von Polymeren eingeschlossen ist.

Myoglobin ist ein im Muskelgewebe von Wirbeltieren vorkommendes, Sauerstoff bindendes Protein. Diese Bewegungen sind für die Erfüllung der biologischen Funktionen eines Proteins wesentlich und die Ergebnisse machen Proteine zu einem entwicklungsfähigen Material für neue Wundverbände oder sogar chemische Gassensoren.

Wasser ist die natürliche Umgebung für lösliche Proteine sowie integraler Bestandteil ihrer Strukturen und ermöglicht es ihnen, ihre spezifischen Funktionen auszuführen. Jahrelang nahm man an, dass Proteine nur in Wasser oder einem anderen Lösungsmittel funktionieren. Im Jahr 2010 wies jedoch das Team aus Bristol nach, dass es durch Aufbringen von Polymerketten auf die Proteinoberfläche möglich war, lösungsmittel- und wasserfreie Myoglobinflüssigkeiten herzustellen, die trotzdem ihre biologische Rolle erfüllen konnten. Wissenschaftler haben nun gezeigt, dass die Proteindynamik die Ursache dafür ist.

Myoglobin tritt in beinahe allen Säugetieren auf und ist für die rote Farbe von rohem Fleisch verantwortlich. Wie bei allen löslichen Proteinen ist seine Oberfläche mit Wassermolekülen bedeckt. Mit dieser Untersuchung wollten Forscher herausfinden, ob sich die Proteinstruktur noch bewegen und weiterhin Sauerstoff binden kann, wenn alles Wasser vollständig entfernt und durch synthetische Moleküle ersetzt wurde.

Das Team untersuchte drei Proben: eine nasse Probe (Protein in Wasser), eine trockene Probe (dehydriertes Protein) und eine trockene Protein-Polymer-Hybrid-Probe, bei der die Wassermoleküle durch synthetisch hergestellte Polyethylen-Polymer-Oberflächenmoleküle auf der Basis von Glykol ersetzt wurden. Mit der sogenannten inkohärenten Neutronenstreuung am Institut Laue-Langevin im französischen Grenoble und am FRMII in Garching sowie des Zentrums für Forschung mit Neutronen in Jülich konnte das Team die Bewegungen im Protein und der Polymeroberfläche getrennt beobachten. Diese Trennung wurde möglich durch eine in einem speziellen Deuterierungslabor am ILL vorgenommene Markierung, bei der entweder die Polymer- oder die Proteinbewegungen dadurch maskiert wurden, dass man Wasserstoff durch sein schwereres Isotop Deuterium ersetzte. Sie fanden heraus, dass sich die von Polymeren umgebenen Myoglobinmoleküle genauso bewegten wie bei der nassen Probe und dass die trockene Probe sehr geringe Beweglichkeit zeigte.

Das Wissen, dass Proteine ohne Wasser funktionieren können, eröffnet vielfältige Anwendungen im täglichen Leben; denn nun ist klar, dass es Alternativen gibt, wenn kein Wasser verfügbar ist. Mögliche Anwendungen sind biochemische Gassensoren, weil Myoglobin Kohlenmonoxidmoleküle binden kann. Eine andere mögliche Anwendung ist die Entwicklung neuer Wundverbände. Bei diesen kann das flüssige Protein entweder intern oder extern zu der Wunde gelangen, um die Ausheilzeit zu verkürzen, indem es dem verletzten Gewebe Sauerstoff oder andere wesentliche Chemikalien zuführt.

„Diese Entdeckungen haben unser grundlegendes Verständnis von Proteinen und ihrem Verhalten erweitert, was viele neue Möglichkeiten für ihre Anwendung in industriellen Verfahren und in der Medizin eröffnet. Die Tatsache, dass unsere Proteine ihre Funktion erfreulicherweise auch ohne Wasser erfüllen können, das man für unentbehrlich für das Leben hielt, beweist, wie robust diese biologischen Nanomaschinen sind“, so Adam Perriman von der Universität Bristol.

„Neutronenstreuverfahren eignen sich hervorragend zur Untersuchung der Dynamik von Proteinen und ihrer Umgebung. Mit den Neutronenstreueinrichtungen am ILL und FRMII können wir die Bewegungen von Proteinen analysieren und damit die durch Kristallografie gewonnenen einzelnen Momentaufnahmen ihrer Strukturen ergänzen“, bemerkt Martin Weik vom Institut de Biologie Structurale.

Anfang dieses Monats wandten Martin Weik und seine Kollegen vom IBS, dem ILL, der Universität Kalifornien, dem australischen Institut für Wissenschaft und Technologie und dem Zentrum für Forschung mit Neutronen Jülich am FRMII diese Techniken auf ein intrinsisch ungeordnetes Protein (IDP), genannt Tau, an, um zu untersuchen und zu verstehen, wie sich seine Flexibilität und seine Wechselwirkungen mit Wasser von geordneten Proteinen wie z.B. Myoglobin unterscheiden.

Sie fanden heraus, dass das ungeordnete Tau-Protein sehr viel stärker an Wasserbewegungen koppelt als gefaltete Proteine. IDPs sind in einem medizinischen Kontext von großem Interesse, weil sie zusammenaggregieren und clustern können, um die Amyloidfibrillen bei neuro-degenerativen Krankheiten wie Parkinson und Alzheimer zu erzeugen. Während die geordnete Struktur gefalteter Proteine die Entwicklung von Arzneien ermöglicht, die in das Protein wie ein Schlüssel in ein Schloss passen, macht die konformationelle Veränderlichkeit eines intrinsisch ungeordneten Proteins wie des Tau dies schwieriger. Ein tieferes Verständnis ihrer Dynamik ist notwendig. Die Entdeckung starker Kopplung mit Wasserbewegungen ist ein großer Schritt vorwärts.

Arno Laxy | idw
Weitere Informationen:
http://www.ill.eu/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rasche Umweltveränderungen begünstigen Artensterben
19.10.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was winzige Strukturen über Materialeigenschaften verraten

19.10.2017 | Materialwissenschaften

Rasche Umweltveränderungen begünstigen Artensterben

19.10.2017 | Biowissenschaften Chemie

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungsnachrichten