Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronen helfen, zentrale Enzymfunktion aufzuklären: Effektivere Nutzung von Biomasse

02.11.2015

Meist erfordert die Gewinnung von Energie oder Wertstoffen aus Pflanzen viele Verfahrensschritte und aggressive Chemikalien. Um diese Prozesse effizienter und ressourcenschonender zu gestalten, suchen Forscher geeignete Enzyme. Mit Hilfe von Neutronen haben nun Wissenschaftler den Wirkungsmechanismus der Enzymklasse der Glycosidasen untersucht. Die Messungen wurden an den Neutronenquellen in Los Alamos und Oak Ridge (USA) sowie an der Forschungs-Neutronenquelle der Technischen Universität München (TUM) durchgeführt. Die Ergebnisse sind ein Schlüssel dazu, die großtechnische Verarbeitung von Biomasse zu verbessern.

Möchte man aus Biomasse Kunststoffe, chemische Zwischenprodukte oder Biokraftstoffe, herstellen, so muss zuerst die Hemicellulose, ein in Pflanzenzellwänden reichlich vorhandenes, großes Vielfachzuckermolekül, zu einfachen Zuckern abgebaut werden. Gegenüber der unkatalysierten Reaktion in neutraler Lösung beschleunigen Enzyme wie die Glykosidasen die Abbaureaktion um bis zu 18 Zehnerpotenzen.


Glykosidasekristall (links), mit seinem Beugungsbild, wie es bei der Neutronenstreuung am Instrument BioDiff entsteht.

Bild: TUM

Die Biomasse wird typischer Weise in sehr alkalischem Milieu vorbehandelt. Ihre maximale Aktivität entwickeln die natürlichen Enzyme jedoch in einer leicht sauren Umgebung. Ein wichtiges Forschungsziel ist deshalb, diese Enzyme so zu verändern, dass sie auch in alkalischem Milieu effektiv arbeiten.

Dazu ist es aber nötig, den Ablauf der Reaktionen am Enzym, insbesondere die genaue Position aller Wasserstoffatome im aktiven Zentrum eines Enzyms vor, während und nach der chemischen Reaktion im Detail zu kennen. Dieses Wissen fehlte bisher aber.

Detektivarbeit mit Neutronen

Im Rahmen eines internationalen Kooperationsprojekts bestimmte nun ein Forscherteam um Andrey Kovalevsky, Wissenschaftler am Oak Ridge National Laboratory, die Struktur einer Glycosidase mit bisher unerreichter Genauigkeit. Eine der drei im Projekt genutzten Neutronenquellen war die Forschungs-Neutronenquelle (FRM II) der TU München.

„Im Gegensatz zur Röntgenstrukturanalyse ist die Neutronenstreuung die Methode der Wahl um die Positionen von Wasserstoffatomen im aktiven Zentrum von Enzymen zu bestimmen", sagt TUM-Biologe Andreas Ostermann, der zusammen mit seinem Kollegen Tobias Schrader vom Forschungszentrum Jülich in Garching das Instrument BioDiff betreibt.

Mit Hilfe der Streuung von Neutronen an Kristallen des Enzyms analysierten die Wissenschaftler die Struktur der Glykosidase. Sie untersuchten es bei verschiedenen pH-Werten und im Komplex mit einem Substratmolekül. Die aus den Neutronenstreu-Experimenten gewonnenen Erkenntnisse wurden anschließend mit computergestützten Simulationen der Moleküldynamik weiter verfeinert.

Geschickte Wendung

In ihrer Arbeit entdeckten sie so, dass der entscheidende Schritt von der Positionierung einer bestimmten Aminosäure-Seitenkette abhängt. Diese Seitenkette enthält einen Glutaminsäurerest. Dreht sie sich nach unten und weg vom Substrat, kann die Glutaminsäure ein Proton von einem Wassermolekül übernehmen. Dreht sich die Kette nach oben, verstärkt dies die Säurewirkung, und das Proton wird auf das Substrat übertragen.

Der leitende Autor der Publikation, Andrey Kovalevsky, ist sehr zufrieden mit dem Erfolg der Experimente: „Niemand hat jemals Wasserstoffatome in einer Glykosidase beobachtet und direkt gesehen, wie der katalytische Glutaminsäurerest protoniert wird.“ Mit diesem Wissen kann man nun daran gehen, das Enzym so zu verändern, dass der Biomasseabbau auch bei hohem pH-Wert effektiv funktioniert.

Die Forschungsarbeiten wurden gefördert durch das Oak Ridge National Laboratory (ORNL), das Office of Basic Energy Sciences und das Office of Biological and Environmental Research (BER) des US Department of Energy (DOE), das chinesische Bildungsministerium und den Innovation Fund der Yangzhou University. Die Messungen wurden am Instrument BioDiff des Heinz Maier-Leibnitz Zentrums (MLZ) an der Forschungs-Neutronenquelle (FRM II) in Garching sowie an Instrumenten der Neutronenquellen in Los Alamos und Oak Ridge und der Advanced Photon Source des Argonne National Laboratory in den USA durchgeführt. Darüber hinaus waren Wissenschaftler der Nanjing Agricultural University und der Universität von Toledo an dem Projekt beteiligt.

Publikation:

Q. Wan, J. M. Parks, B. L. Hanson, S. Z. Fisher, A. Ostermann, T. E. Schrader, D. E. Graham, L. Coates, P. Langan, and A. Kovalevsky; Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography, PNAS 112, 12384 (2015) – DOI: 10.1073/pnas.1504986112

Weitere Informationen:

http://www.pnas.org/content/112/40/12384.abstract

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

nachricht Blutstammzellen reagieren selbst auf schwere Infektionen
21.07.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Pharmakologie - Im Strom der Bläschen

21.07.2017 | Biowissenschaften Chemie

Verbesserung des mobilen Internetzugangs der Zukunft

21.07.2017 | Informationstechnologie

Blutstammzellen reagieren selbst auf schwere Infektionen

21.07.2017 | Biowissenschaften Chemie