Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutrino-Teleskope fangen Signale von Meeressäugern auf

01.12.2010
Pottwale tummeln sich auch im Mittelmeer - das haben Biologen mithilfe eines Instrumentariums herausgefunden, das in der Tiefsee unvorstellbar winzigen und flüchtigen Besuchern der Erde auf der Spur ist: großen Unterwasserteleskopen, mit denen Physiker Signale von Neutrinos, beinahe masselosen Elementarteilchen, aus den Tiefen des Universums nachweisen wollen.

Aus den anfallenden Daten können Meeresbiologen die Geräusche der Wale herausfiltern. Das Erlangen Centre for Astroparticle Physics (ECAP) der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) wird dabei sein, wenn die ungewöhnliche Querverbindung zwischen zwei Disziplinen am 1. und 2. Dezember 2010 in Paris diskutiert wird.

Die Wissenschaftlerinnen und Wissenschaftler des ECAP erforschen Neutrinos mit dem Teleskop ANTARES, das seit 2008 in der Nähe von Toulon in 2.475 Metern Tiefe vollständig aufgebaut ist und Tag und Nacht Daten sammelt, ähnlich wie NEMO vor Italien und NESTOR vor Griechenland. Am europäischen Gemeinschaftsprojekt KM3NeT, einem kubikkilometer großen Neutrino-Teleskop, das im Mittelmeer künftig mehr als eine Milliarde Tonnen Wasser beobachten soll, sind die Erlanger Astroteilchenphysiker ebenfalls maßgeblich beteiligt.

ANTARES überwacht etwa 30 Millionen Tonnen Wasser mittels Photomultipliern, die einzel-ne Photonen nachweisen und ihre Ankunftszeiten mit einer Genauigkeit von etwa einer Nano-sekunde messen können. Dadurch sollen Neutrinos aus astronomischen Quellen, die sich trotz ihrer ungeheuer großen Zahl der Beobachtung bisher hartnäckig entziehen, „sichtbar“ werden. Darüber hinaus könnte es sein, dass man Neutrinos buchstäblich „hören“ kann. Sie heizen das umgebende Wasser in einem sehr geringen Radius ein klein wenig auf, wenn sie ihre Energie in einer Teilchenkaskade abgeben. Dabei dehnt sich das Wasser gerade genug aus, um einen messbaren Schallpuls entstehen zu lassen. Außerdem lassen sich akustische Sensoren in größeren Abständen voneinander anbringen als optische, da sich Schall in Wasser weiter ausbreiten kann als Licht. Um zu testen, ob auf diese Weise noch gewaltigere Wassermengen auf Neutrino-Reaktionen zu untersuchen sind, wurden am ECAP akustische Sensoren und die zugehörige Ausleselektronik entwickelt und in ANTARES integriert. Seit Ende 2007 werden nun laufend akustische Daten aus der Tiefsee genommen.

Noch waren keine Signale von Neutrinos zu finden, doch andere Geräusche sind ständig vorhanden, denn in den Wassermassen des Mittelmeers ist es keineswegs still. Die europäischen Physiker, die mit Unterwasserteleskopen arbeiten, kamen auf die Idee, ihre Daten auch anderweitig zu verwerten und ihre Geräte mit Meeresbiologen zu teilen. Damit tragen sie dazu bei, ein bioakustisches Netzwerk zu entwickeln, das in der Tiefsee Signale aus der Umwelt auffängt.

Live-Walgesang im Internet
Wissenschaftlern aus anderen Disziplinen bietet sich dadurch nicht allein die Möglichkeit, Ausflüge von Walen ins Mittelmeer zu verfolgen; für langfristige Studien in der Tiefsee könnten spezielle Detektoren eingerichtet werden, beispielsweise um Ozeanströmungen zu untersuchen, die Rätsel der Biolumineszenz – des „kalten Leuchtens“ von Organismen – zu lösen oder Bewegungen der Erdkruste zu überwachen und rechtzeitig vor Erdbeben warnen zu können. Für Hobby-Ozeanologen wird etwas anderes besonders reizvoll sein: Sie können am Computer dem Gesang der Wale lauschen, und das sogar life. Die Internet-Platform LI-DO (Listen to the Deep Ocean) liefert die Daten mit einer minimalen Zeitverzögerung nach Hause (http://listentothedeep.com/).

Der Workshop im Palais de la Découverte in Paris des Europäischen Netzwerks für Astroteilchenphysik und CNRS/IN2P3 (ASPERA) mit dem Titel „From the Geosphere to the Cosmos” (Von der Erde zum Weltall) steht Vertreterinnen und Vertretern der Medien offen, die sich für die neu entdeckten Synergien von Umweltwissenschaften und Astroteilchenphysik interessieren. Am Mittwoch, 1. Dezember, findet zusätzlich um 16.15 Uhr eine Pressekonferenz am Tagungsort statt.

Das Erlangen Centre for Astroparticle Physics umfasst drei Lehrstühle aus dem Physikalischen Institut, die Wissenschaftler der Sternwarte in Bamberg und einen Lehrstuhl im Institut für Theoretische Physik. Im Mai 2008 wurde das ECAP eingeweiht.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 27.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“

Weitere Informationen für die Medien:
Dr. Robert Lahmann
Tel.: 09131/85- 27147
Robert.Lahmann@physik.uni-erlangen.de

Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.ecap.physik.uni-erlangen.de/
http://www.ecap.physik.uni-erlangen.de/acoustics
http://listentothedeep.com/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften