Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Neutrino - sein eigenes Antiteilchen?

15.11.2010
Das Gerda-Experiment beginnt die Suche nach neutrinolosem Doppel-Betazerfall

Das GERDA-Experiment (Germanium Detector Array) wird heute in einem Labor unter dem italienischen Gran-Sasso-Massiv eingeweiht. Mit einem radioaktiven Zerfall in dem Metall Germanium wollen Physiker die Frage klären, ob das Neutrino sein eigenes Antiteilchen ist. Dann könnten sich Neutrinos untereinander gegenseitig vernichten, analog etwa zu einem Proton und einem Antiproton. Mit dem Experiment wollen die Forscher ferner die Masse des schwer nachweisbaren Teilchens direkt bestimmen.


Gerda im Aufbau: Der Blick in den leeren Wassertank zeigt den doppelwandigen Kryostaten. Inzwischen haben die Forscher ihn mit Argon gefüllt und die Germaniumdetektoren in das flüssige Edelgas hinabgelassen. Die Wände des Wassertanks sind mit reflektierender Folie überzogen und mit Lichtsensoren bestückt, die Störsignale registrieren.
Max-Planck-Gesellschaft

Germanium-Kristalle im Zentrum eines großen Volumens flüssigen Argons, umgeben von einem wassergefüllten Tank von zehn Meter Durchmesser; das Ganze untergebracht in den Räumen des weltgrößten Astroteilchenlabors, des italienischen Istituto Nazionale di Fisica Nucleare, unter 1400 Meter Fels des Gran-Sasso-Massivs im Herzen Italiens.

Das ist das Experiment Gerda, welches am neunten November 2010 eingeweiht wird. Gerda ist für die Suche nach einem spontanen Zerfallsprozess der Materie ausgelegt, der nur extrem selten auftritt: der neutrinolose Doppel-Betazerfall, wie er in der Fachsprache der Physiker heißt. Damit er möglich ist, muss das Neutrino - wie theoretisch erwartet - mit seinem eigenen Antiteilchen identisch sein (siehe: Die Physik von Gerda). Selbst wenn dies der Fall ist, wäre doch der Zerfall so selten, dass es einer langen, sorgfältigen und ausgefeilten Beobachtung bedarf, um ihn nachzuweisen. Es ist wie ein einzelner unauffälliger und sehr leiser Ton in einem Konzert, der nur zu leicht von Hintergrundgeräuschen überdeckt wird - und hierzu bedarf es einer perfekten, nach außen abgeschirmten Akustik: kein Zivilisationslärm darf nach innen dringen, und sämtliche Technik muss geräuschlos funktionieren.

Gleiches gilt für das Gerda-Experiment. In seiner "Akustik", mit einer gleich einer Matrjoschka-Puppe ineinander geschachtelten Anordnung, schützen flüssiges Argon, hochreines Wasser und massiver Fels den charakteristischen Ton des Zerfalls vor der Kakophonie aus Milliarden von Teilchen aus den Tiefen des Universums, dem Gestein des Massivs und der Detektorstruktur selbst. Der kosmische "Hintergrundlärm" wird vom Gebirge über dem Labor abgefangen und die geschachtelte Struktur schirmt die Kristalle gegen die Strahlung aus dem Gestein und den großen Detektorstrukturen ab.

Der neutrinolose Doppel-Betazerfall gibt den Wissenschaftlern eine ganz wesentliche Information. Denn, so beobachtet, würde er die eigentümliche Eigenschaft des Neutrinos, sein eigenes Antiteilchen zu sein (Majorana-Neutrino) bestätigen. Dies ist von entscheidender Bedeutung für die Physik der Elementarteilchen, Astrophysik und Kosmologie.

Der Aufbau von Gerda

Gerda ist eine internationale Kollaboration unter Beteiligung von 15 Instituten aus Deutschland, Italien, Russland, der Schweiz, Polen und Belgien. Das Experiment startet mit acht Detektoren von jeweils zwei Kilogramm Masse und der Größe einer Getränkedose. In einer zweiten Phase wird es mit weiteren Detektoren ausgestattet. Die Detektoren bestehen aus hochreinen Germanium-Einkristallen, die mit dem Isotop Germanium 76 angereichert sind. Die beim Doppel-Betazerfall dieses Isotops ausgesendeten Elektronen geben ihre Energie unmittelbar in dem Kristall ab, der somit für diesen Zerfall zugleich als Quelle und Detektor dienen kann. Die Gerda-Kristalle sind in einem sechs Meter hohen und vier Meter weiten Tank (Kryostat), gefüllt mit flüssigem Argon (Temperatur 186°C) aufgehängt. Der Kryostat wiederum befindet sich in einem neun Meter hohen Wassertank von 10 Meter Durchmesser, der für weitere Abschirmung sorgt.

Die Physik von Gerda

Neben den Photonen sind Neutrinos die häufigsten Teilchen im Universum. Jedoch sind sie zugleich sehr schwer nachweisbar, da sie nur schwach mit der übrigen Materie wechselwirken. Allgemeine theoretische Überlegungen der Elementarteilchenphysik sagen voraus, dass Neutrinos mit ihren eigenen Antiteilchen identisch sind und eine sehr kleine, aber dennoch endlich große Masse besitzen. Das Gerda-Experiment hat nun das Ziel, diese Eigenschaften zu überprüfen, indem nach dem sehr seltenen neutrinolosen Doppel-Betazerfall gesucht wird. In diesem Zerfall wandeln sich zwei der Neutronen eines Germanium-Atomkerns in zwei Protonen um, wobei zwei Elektronen und zwei Neutrinos entstehen. Sind nun letztere ihre eigenen Antiteilchen, so können sie sich intern gegenseitig auslöschen und es werden lediglich die Elektronen freigesetzt. Die Beobachtung eines solchen neutrinolosen Doppel-Betazerfalls würde die Majorana-Eigenschaft des Neutrinos bestätigen und direkt die Bestimmung seiner Masse erlauben. Der Wert dieser Masse ist von großer Bedeutung für die Astrophysik (z. B. für Supernova-Explosionen) und kosmologische Modelle, speziell, was die Asymmetrie von Teilchen und Antiteilchen im frühen Kosmos sowie die Bildung von Galaxien und Galaxienhaufen angeht.

An Gerda beteiligte Institute

Deutschland:
Max-Planck-Institut für Kernphysik, Heidelberg
Max-Planck-Institut für Physik, München
Technische Universität Dresden
Eberhard-Karls-Universität Tübingen
Italien:
Laboratori Nazionali del Gran Sasso
INFN-Milan, Universität Mailand
INFN-Milan Bicocca, Universität Mailand-Bicocca
INFN-Padova, Universität Padua
Russland:
Vereinigtes Institut für Kernforschung, Dubna
Institut für Kernforschung, Moskau
Institut für Theoretische Physik und Experimentalphysik, Moskau
Kurtschatow-Institut, Moskau
Polen:
Jagiellonen-Universität, Krakau
Belgien:
Institut für Referenzmaterialien und Messungen, Geel
Schweiz:
Universität Zürich
Weitere Informationen erhalten Sie von:
Prof. Dr. Werner Hofmann
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-330
E-Mail: werner.hofmann@mpi-hd.mpg.de
Prof. Dr. Manfred Lindner
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-800
E-Mail: manfred.lindner@mpi-hd.mpg.de
Prof. Dr. Allen Caldwell
Max-Planck-Institut für Physik, München
Tel.: +49 89 32354-207
E-Mail: caldwell@mppmu.mpg.de
Dr. Béla Majorovits
Max-Planck-Institut für Physik, München
Tel.: +49 89 32354-262
E-Mail: bela@mppmu.mpg.de
Silke Zollinger (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Institut für Physik, München
Tel.: +49 89 32354-292
E-Mail: silke.zollinger@mpp.mpg.de
Dr. Bernold Feuerstein (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-281
E-Mail: info@mpi-hd.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-hd.mpg.de/gerda/
http://www.mpi-hd.mpg.de/gerda/inaug/video/Gerda_Master.mov

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics