Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Neutrino - sein eigenes Antiteilchen?

15.11.2010
Das Gerda-Experiment beginnt die Suche nach neutrinolosem Doppel-Betazerfall

Das GERDA-Experiment (Germanium Detector Array) wird heute in einem Labor unter dem italienischen Gran-Sasso-Massiv eingeweiht. Mit einem radioaktiven Zerfall in dem Metall Germanium wollen Physiker die Frage klären, ob das Neutrino sein eigenes Antiteilchen ist. Dann könnten sich Neutrinos untereinander gegenseitig vernichten, analog etwa zu einem Proton und einem Antiproton. Mit dem Experiment wollen die Forscher ferner die Masse des schwer nachweisbaren Teilchens direkt bestimmen.


Gerda im Aufbau: Der Blick in den leeren Wassertank zeigt den doppelwandigen Kryostaten. Inzwischen haben die Forscher ihn mit Argon gefüllt und die Germaniumdetektoren in das flüssige Edelgas hinabgelassen. Die Wände des Wassertanks sind mit reflektierender Folie überzogen und mit Lichtsensoren bestückt, die Störsignale registrieren.
Max-Planck-Gesellschaft

Germanium-Kristalle im Zentrum eines großen Volumens flüssigen Argons, umgeben von einem wassergefüllten Tank von zehn Meter Durchmesser; das Ganze untergebracht in den Räumen des weltgrößten Astroteilchenlabors, des italienischen Istituto Nazionale di Fisica Nucleare, unter 1400 Meter Fels des Gran-Sasso-Massivs im Herzen Italiens.

Das ist das Experiment Gerda, welches am neunten November 2010 eingeweiht wird. Gerda ist für die Suche nach einem spontanen Zerfallsprozess der Materie ausgelegt, der nur extrem selten auftritt: der neutrinolose Doppel-Betazerfall, wie er in der Fachsprache der Physiker heißt. Damit er möglich ist, muss das Neutrino - wie theoretisch erwartet - mit seinem eigenen Antiteilchen identisch sein (siehe: Die Physik von Gerda). Selbst wenn dies der Fall ist, wäre doch der Zerfall so selten, dass es einer langen, sorgfältigen und ausgefeilten Beobachtung bedarf, um ihn nachzuweisen. Es ist wie ein einzelner unauffälliger und sehr leiser Ton in einem Konzert, der nur zu leicht von Hintergrundgeräuschen überdeckt wird - und hierzu bedarf es einer perfekten, nach außen abgeschirmten Akustik: kein Zivilisationslärm darf nach innen dringen, und sämtliche Technik muss geräuschlos funktionieren.

Gleiches gilt für das Gerda-Experiment. In seiner "Akustik", mit einer gleich einer Matrjoschka-Puppe ineinander geschachtelten Anordnung, schützen flüssiges Argon, hochreines Wasser und massiver Fels den charakteristischen Ton des Zerfalls vor der Kakophonie aus Milliarden von Teilchen aus den Tiefen des Universums, dem Gestein des Massivs und der Detektorstruktur selbst. Der kosmische "Hintergrundlärm" wird vom Gebirge über dem Labor abgefangen und die geschachtelte Struktur schirmt die Kristalle gegen die Strahlung aus dem Gestein und den großen Detektorstrukturen ab.

Der neutrinolose Doppel-Betazerfall gibt den Wissenschaftlern eine ganz wesentliche Information. Denn, so beobachtet, würde er die eigentümliche Eigenschaft des Neutrinos, sein eigenes Antiteilchen zu sein (Majorana-Neutrino) bestätigen. Dies ist von entscheidender Bedeutung für die Physik der Elementarteilchen, Astrophysik und Kosmologie.

Der Aufbau von Gerda

Gerda ist eine internationale Kollaboration unter Beteiligung von 15 Instituten aus Deutschland, Italien, Russland, der Schweiz, Polen und Belgien. Das Experiment startet mit acht Detektoren von jeweils zwei Kilogramm Masse und der Größe einer Getränkedose. In einer zweiten Phase wird es mit weiteren Detektoren ausgestattet. Die Detektoren bestehen aus hochreinen Germanium-Einkristallen, die mit dem Isotop Germanium 76 angereichert sind. Die beim Doppel-Betazerfall dieses Isotops ausgesendeten Elektronen geben ihre Energie unmittelbar in dem Kristall ab, der somit für diesen Zerfall zugleich als Quelle und Detektor dienen kann. Die Gerda-Kristalle sind in einem sechs Meter hohen und vier Meter weiten Tank (Kryostat), gefüllt mit flüssigem Argon (Temperatur 186°C) aufgehängt. Der Kryostat wiederum befindet sich in einem neun Meter hohen Wassertank von 10 Meter Durchmesser, der für weitere Abschirmung sorgt.

Die Physik von Gerda

Neben den Photonen sind Neutrinos die häufigsten Teilchen im Universum. Jedoch sind sie zugleich sehr schwer nachweisbar, da sie nur schwach mit der übrigen Materie wechselwirken. Allgemeine theoretische Überlegungen der Elementarteilchenphysik sagen voraus, dass Neutrinos mit ihren eigenen Antiteilchen identisch sind und eine sehr kleine, aber dennoch endlich große Masse besitzen. Das Gerda-Experiment hat nun das Ziel, diese Eigenschaften zu überprüfen, indem nach dem sehr seltenen neutrinolosen Doppel-Betazerfall gesucht wird. In diesem Zerfall wandeln sich zwei der Neutronen eines Germanium-Atomkerns in zwei Protonen um, wobei zwei Elektronen und zwei Neutrinos entstehen. Sind nun letztere ihre eigenen Antiteilchen, so können sie sich intern gegenseitig auslöschen und es werden lediglich die Elektronen freigesetzt. Die Beobachtung eines solchen neutrinolosen Doppel-Betazerfalls würde die Majorana-Eigenschaft des Neutrinos bestätigen und direkt die Bestimmung seiner Masse erlauben. Der Wert dieser Masse ist von großer Bedeutung für die Astrophysik (z. B. für Supernova-Explosionen) und kosmologische Modelle, speziell, was die Asymmetrie von Teilchen und Antiteilchen im frühen Kosmos sowie die Bildung von Galaxien und Galaxienhaufen angeht.

An Gerda beteiligte Institute

Deutschland:
Max-Planck-Institut für Kernphysik, Heidelberg
Max-Planck-Institut für Physik, München
Technische Universität Dresden
Eberhard-Karls-Universität Tübingen
Italien:
Laboratori Nazionali del Gran Sasso
INFN-Milan, Universität Mailand
INFN-Milan Bicocca, Universität Mailand-Bicocca
INFN-Padova, Universität Padua
Russland:
Vereinigtes Institut für Kernforschung, Dubna
Institut für Kernforschung, Moskau
Institut für Theoretische Physik und Experimentalphysik, Moskau
Kurtschatow-Institut, Moskau
Polen:
Jagiellonen-Universität, Krakau
Belgien:
Institut für Referenzmaterialien und Messungen, Geel
Schweiz:
Universität Zürich
Weitere Informationen erhalten Sie von:
Prof. Dr. Werner Hofmann
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-330
E-Mail: werner.hofmann@mpi-hd.mpg.de
Prof. Dr. Manfred Lindner
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-800
E-Mail: manfred.lindner@mpi-hd.mpg.de
Prof. Dr. Allen Caldwell
Max-Planck-Institut für Physik, München
Tel.: +49 89 32354-207
E-Mail: caldwell@mppmu.mpg.de
Dr. Béla Majorovits
Max-Planck-Institut für Physik, München
Tel.: +49 89 32354-262
E-Mail: bela@mppmu.mpg.de
Silke Zollinger (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Institut für Physik, München
Tel.: +49 89 32354-292
E-Mail: silke.zollinger@mpp.mpg.de
Dr. Bernold Feuerstein (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-281
E-Mail: info@mpi-hd.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-hd.mpg.de/gerda/
http://www.mpi-hd.mpg.de/gerda/inaug/video/Gerda_Master.mov

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufräumen? Nicht ohne Helfer
19.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie