Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neurowissenschaft: Dunkel ist schneller als hell

11.02.2016

„Da hat sich doch etwas bewegt?“ Jeder kennt die Situation: man blickt in Richtung eines Geräuschs, kann aber beim besten Willen kein Objekt erkennen. Erst dessen Bewegung, und sei sie minimal, erlaubt dessen Wahrnehmung. Forscher der Ruhr-Universität Bochum haben dieses Phänomen untersucht und konnten zum ersten Mal zeigen, dass gleichzeitige Lichtänderungen zwischen Objektgrenzen und Hintergrund Aktivitätswellen in der visuellen Großhirnrinde auslösen. Diese könnten ein empfindliches Signal zur Wahrnehmung von Bewegung sein. Die Ergebnisse der Wissenschaftler wurden in „The Journal of Neuroscience“ veröffentlicht.

Enttarnung durch Hell-Dunkel Wechsel


© Dirk Jancke

RUB-Forscher haben untersucht, wie wir Bewegung wahrnehmen. Sie zeigen, dass Kontraste zwischen Objekt und Hintergrund im Gehirn Aktivitätswellen verursachen, die für das Erkennen verantwortlich sind.

Im Tierreich gibt es zahlreiche Beispiele dafür, wie Form und Muster von Körperoberflächen durch Ähnlichkeiten mit der Umgebung zur Tarnung genutzt werden. Dabei verwenden sowohl Jäger als auch Beute dieselbe Strategie. Um nicht entdeckt zu werden, imitieren Tiere die Hell-Dunkel Verteilung ihrer natürlichen Umgebung in ihrer Körperform und Farbe.

„Der elementar erste Schritt beim Sehen ist die Unterscheidung von Hell und Dunkel. Die Schwierigkeit für Sehsysteme ist es, aus der Verteilung von Kontrasten eine Ordnung zu erzeugen, in der Objekte und Formen identifiziert werden können. Räumlich und zeitlich zusammenhängende Lichtwechsel bei Bewegung können dafür ein wirkungsvoller Anhaltspunkt sein“, so der Leiter der Studie PD Dr. Dirk Jancke.

Mit einem hochauflösenden bildgebenden Verfahren wiesen die RUB Forscher nach, dass zeitgleiche Hell-Dunkel Wechsel zeitversetzte Aktivierungen in der Sehrinde auslösen. Die dadurch erzeugten Erregungswellen werden vermutlich in nachfolgenden Gehirnarealen zur Kodierung von Objektbewegungen genutzt.

Wettlauf von Signalen im Gehirn

In ihrer Studie präsentierten die Forscher auf einem Bildschirm graue Quadrate, die mit gleicher Intensität entweder schlagartig aufhellten oder abgedunkelt wurden und zeichneten die bei der Betrachtung entstehenden Gehirnaktivitäten auf. Das überraschende Ergebnis war, dass für dunkel werdende Reize die im Gehirn eintreffenden Signale deutlich schneller präsent waren, als für aufhellende Reize.

„Das heißt, zeitgleiche Lichtänderungen in der Außenwelt wurden im Gehirn zeitversetzt verarbeitet“, sagt Sascha Rekauzke, Erstautor der Studie. Ein geringer Zeitunterschied bei der Verarbeitung von Hell und Dunkel von wenigen Millisekunden war bereits bekannt. In den Ganglienzellen der Netzhaut bewirken Transmitter, die „Licht an“ signalisieren, eine direkte Öffnung von Ionenkanälen. Demgegenüber werden „Licht aus“ Signale indirekt, das heißt, erst über einen intrazellulären Umweg vermittelt.

Die RUB Forscher zeigten nun, dass der resultierende zeitliche Unterschied im Gehirn weiter verstärkt wird – bis auf etwa zehn Millisekunden. Das hat zur Folge, dass bei gleichzeitigen Lichtwechseln an zwei benachbarten Orten ein raumzeitlicher Versatz der Gehirnaktivierung entsteht. Dies führt zu einem Bewegungssignal in Form einer sich asymmetrisch ausbreitenden Erregungswelle.

Asymmetrie als universelles Prinzip

Asymmetrien werden in biologischen Systemen auf verschiedenste Weise genutzt. Ein geläufiges Beispiel: Beim Hören erreichen Schallwellen, die von seitlich versetzten Quellen ausgehen, die Ohren zu minimal unterschiedlichen Zeiten. Aus der zeitlichen Differenz entstehen in den Netzwerken der Nervenzellen Laufzeitunterschiede, die vom Gehirn als Richtung der Schallquelle interpretiert werden und deren Lokalisation erlauben. Dirk Jancke: „Unser Gehirn ist eine gigantische Vergleichsmaschine, oft basierend auf selbst produzierten Asymmetrien – und dies, wie wir in unserer Studie weiter untermauern konnten, bereits bei elementaren Wahrnehmungsprozessen.“

Förderung

Die Deutsche Forschungsgemeinschaft förderte die Studie, unter anderem im Rahmen des Bochumer Sonderforschungsbereiches 874 „Integration und Repräsentation sensorischer Prozesse (Teilprojekt A2, Eysel/Jancke)“.

Titelaufnahme
S. Rekauzke, N. Nortmann, R. Staadt, Howard S. Hock, G. Schöner, D. Jancke (2016): Temporal asymmetry in dark-bright processing initiates propagating activity across primary visual cortex, Journal of Neuroscience, DOI: 10.1523/JNEUROSCI.3235-15.2016

Text: PD Dr. Dirk Jancke
Redaktion: Annegret Kalus

Weitere Informationen

PD Dr. Dirk Jancke, Optical Imaging Group, Institut für Neuroinformatik der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27845, E-Mail: dirk.jancke@rub.de

Angeklickt

Homepage SFB 874: www.rub.de/sfb874

Webseite Optical Imaging Lab: http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/

Weitere Informationen:

http://www.ruhr-uni-bochum.de/sfb874/index.html

Raffaela Römer | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik