Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronen: Total bilingual

27.05.2013
Nervenzellen im Gehirn sprechen zwei „Sprachen“. Eine neue Simulationssoftware berücksichtigt erstmals beide Kommunikationswege.

Das Gehirn ist ein „dicht bevölkerter“ Ort: In einem Kubikmillimeter tummeln sich etwa 100 000 Nervenzellen; der Abstand zur Nachbarzelle beträgt weniger als einen Mikrometer. Dennoch gehen die meisten herkömmlichen Modelle davon aus, dass ein Neuron nur mit den Zellen Informationen austauscht, mit denen es über seinen langen Fortsatz verbunden ist.


Ein Schnappschuss neuronaler Aktivität: Die Simulationssoftware berechnet, was geschieht, wenn eine Nervenzelle ein elektrisches Signal entlang ihres langen Fortsatzes sendet. (Der Fortsatz ist rechts unten im Bild zu sehen.) Die Spannungen, die so an der Zellmembran entstehen, sind farblich dargestellt (Farbskala von schwarz bis gelb). Die Grauabstufungen außerhalb der Zelle geben die Stärke der elektrischen Felder in diesem Bereich an. Grafik: MPIDS


Abbildung 2: Die neue Software erlaubt einen genauen Blick auf ein Neuron und seine Umgebung für zwei verschiedene Szenarien. Links: In dieser Rechnung wurden ? wie in den meisten herkömmlichen Modellen – sämtliche Nachbarzellen des Neurons vernachlässigt. Rechts: Die betrachtete Zelle ist von einer weiteren umschlossen. In beiden Fällen ergeben völlig verschiedene Spannungen und elektrische Felder. Grafik: MPIDS

Selbst manche direkt angrenzende Zellen blendet diese Art der Beschreibung aus. Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), vom Bernstein Focus Neurotechnology in Göttingen und von der Universitätsmedizin Göttingen verfolgen einen anderen Ansatz. Denn mit Hilfe der elektrischen Felder, die ein Neuron in seiner unmittelbaren Umgebung erzeugt, kann es auch mit einer größeren Gruppe von Nachbarn kommunizieren. Die Forscher haben nun erstmals ein leistungsfähiges Software-Paket entwickelt, das diese realistische Situation simuliert, und stellen sie der Wissenschaftsgemeinde als Open Source-Code zur Verfügung.

Sowohl die USA als auch die Europäische Union fördern in den nächsten Jahren die Hirnforschung mit gewaltigen Summen: Während die USA möglicherweise mehrere Milliarden Dollar für das so genannte Human Brain Activity Project zur Verfügung stellt, unterstützt die Europäische Kommission das Human Brain Project unter Leitung der Eidgenössischen Technischen Hochschule Lausanne, das insgesamt etwa eine Milliarde Euro kosten wird. Ziel des ambitionierten Projektes ist es, die Funktionsweise des gesamten Gehirns in Computersimulationen abzubilden.

„Damit Projekte wie diese erfolgreich sein können, ist es aus unserer Sicht nötig, das ,Gespräch‘ zwischen den Neuronen in seiner Gesamtheit zu erfassen“, sagt Dr. Andreas Neef vom MPIDS. Der Neurophysiker leitet seit Februar dieses Jahres am Bernsteinzentrum for Computational Neuroscience in Göttingen die Arbeitsgruppe „Neuronal Computation“. „Dabei spielen auch die elektrischen Felder eine Rolle, die jedes aktive Neuron außerhalb der eigenen Zellmembran erzeugt“, ergänzt er. Mit seinem Team hat Neef nun eine wichtige Grundlage geschaffen, um die gesamte neuronale Kommunikation numerisch handhabbar zu machen.

„Neuronen verfügen über einen gerichteten und einen ungerichteten Kommunikationsweg“, erklärt Dr. Andres Agudelo-Toro vom MPIDS den Grundgedanken. „Es ist, als sprächen sie zwei Sprachen“, ergänzt er. Gezielt leiten sie elektrische Signale, welche sie von ihren Nachbarn empfangen, entlang ihres langen Fortsatzes an andere Zellen weiter. Dabei können die Gesprächspartner viele Zentimeter entfernt, auf der anderen Seite des Gehirns liegen. Bei jedem Signal, das die Zellen auf diese Weise übermitteln, entstehen zudem schwache elektrische Felder in ihrer unmittelbaren Umgebung. Diese ermöglichen eine zweite Art der Kommunikation. Denn die Felder wirken auf die Zellen zurück und können so ihr Verhalten beeinflussen. Gruppen von Nervenzellen etwa gelingt es auf diese Weise, sich zu synchronisieren und ihre Signale zum selben Zeitpunkt weiterzuleiten. Dennoch vernachlässigen herkömmliche Modelle diesen zweiten Kommunikationsweg in der Regel.

Den Göttinger Forschern ist es nun gelungen, diese Lücke zu schließen. Ihre umfangreiche Simulationssoftware berücksichtigt im Detail auch die direkte Umgebung der Neuronen – mit allen elektrischen Feldern, Blutgefäßen und Nachbarzellen. „Als wir begannen, die Wechselwirkung von Neuronen in Simulationen zu untersuchen, mussten wir feststellen, dass es dafür keine geeigneten Simulationswerkzeuge gibt. Das liegt auch daran, dass bereits die Simulation einfacher Probleme mehrere Wochen dauern kann“, so Agudelo-Toro. Erst durch besonders effektive mathematische Verfahren und das Verteilen der Rechenarbeit auf mehrere Prozessoren ist es gelungen, auch realistische Szenarien innerhalb von Stunden zu berechnen. „Auf diese Weise entstand ein Simulationswerkzeug, mit dem sich die unterschiedlichsten Vorgänge und Situationen im Gehirn realistisch modellieren lassen“, so Neef.

Zusammen mit der Arbeitsgruppe von Dr. Andreas Neef nutzen auch Forscher vom Deutschen Primatenzentrum und von der Universitätsmedizin Göttingen die neue Software. Diese ist auch für medizinische Anwendungen von großem Wert, etwa wenn zu diagnostischen oder therapeutischen Zwecken Elektroden direkt ins Gehirn einzelner Patienten eingepflanzt werden. Ziel dabei ist es, die Aktivität einzelner Nervenzellen zu bestimmen und zu steuern. (Zum Vergleich: Beim klassischeren EEG etwa, bei dem Elektroden von außen am Kopf des Patienten angebracht sind, spiegeln die Signale bestenfalls die Aktivität großer Verbände von Nervenzellen wider.) Doch auch hier beeinflussen die Felder der umliegenden Neuronen das Signal. „Die gemessenen Daten kann man nur dann richtig verstehen und interpretieren, wenn man auch diesen Einfluss berücksichtigt“, so Neef.

Die Göttinger Wissenschaftler haben ihr „Werkzeug“, das den Namen CHASTE-Membrane trägt, als Open Source Software entwickelt und stellen es unter http://www.cs.ox.ac.uk/chaste/download.html allen Kollegen zur Verfügung. Es ist eine Erweiterung des Projektes CHASTE (Cancer, Heart, and Soft Tissue Environment), das an der Computerwissenschaftlichen Fakultät der Universität von Oxford beheimatet ist.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.cs.ox.ac.uk/chaste/download.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht «Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung
23.05.2017 | Universität Zürich

nachricht Goldene Hilfe gegen Hautkrankheiten
23.05.2017 | Hochschule Ostwestfalen-Lippe

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie