Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronen durch Licht gesteuert

09.03.2010
Heisenberg-Professor Alexander Gottschalk gehört zu den Pionieren der Optogenetik, einem neuen Forschungszweig der Neurobiologie

Neuronale Netzwerke, insbesondere bei Säugetieren und Menschen, stellen die bei weitem kompliziertesten Systeme des Universums dar. Ein einzelnes der 100 Milliarden (1011) Neurone des Menschen kann mit bis zu 10.000 anderen Neuronen verschaltet sein. In seiner Gänze wird man dieses enorm komplexe System kaum verstehen können.

Doch ist es möglich, die Gehirnfunktion als das Zusammenspiel zahlreicher kleiner, 'elementarer' Schaltkreise zu verstehen. Prof. Alexander Gottschalk, seit Anfang März Heisenberg-Professor an der Goethe-Universität, untersucht die Funktion elementarer Nervenschaltkreise in einem einfachen Modellsystem, dem Fadenwurm Caenorhabditis elegans. In Zusammenarbeit mit der Gruppe von Prof. Ernst Bamberg am Max-Planck-Institut für Biophysik in Frankfurt hat er über gentechnische Methoden licht-aktivierbare Proteine aus Grünalgen beziehungsweise Bakterien in das Nervensystem des Wurmes 'verpflanzt'. Auf diese Weise gelang es, diese Nervenzellen durch Beleuchtung von außen zu aktivieren oder zu hemmen, so dass man Rückschlüsse auf ihre Funktionen ziehen kann.

Die Arbeiten Gottschalks haben maßgeblich zur Entwicklung eines neuen Forschungsgebiets in der Neurobiologie beigetragen, der sogenannten Optogenetik. Seine und ähnliche Ansätze zur Steuerung von Nervenzellen mit Licht werden inzwischen in zahllosen Laboren der Welt angewendet. Sie ziehen viele Studierende und begabte Nachwuchswissenschaftler an. Dabei hat das Labor von Gottschalk als erstes überhaupt die Anwendbarkeit (und Anwendung) optogenetischer Methoden in einem lebenden Tier zeigen können. C. elegans, ein mikroskopisch kleiner, durchsichtiger Fadenwurm, besitzt gerade mal 302 Nervenzellen, die durch Elektronenmikroskopie genau kartiert wurden. Obwohl der Wurm mit seinen circa 7.000 Synapsen weniger 'Verschaltungen' aufweist, als ein einzelnes menschliches Pyramidal-Neuron, findet man doch große Ähnlichkeiten zum Säuger, wenn man das Zusammenwirken der Neuronen betrachtet. So finden sich im Fadenwurm Interaktionen in Nervenzellen zur Geruchswahrnehmung, die analog zu Schaltkreisen in der Säuger-Retina funktionieren.

Die bei C. elegans erprobten Prinzipien der Nervensteuerung durch Licht könnten in absehbarer Zeit vielleicht auch beim Menschen anwendbar sein, zum Beispiel, um bei besonders starken Formen der Epilepsie oder der Parkinson'schen Krankheit Nervenzellen, die 'aus dem Ruder' laufen, mit Hilfe von Licht ruhigzustellen. "Das klingt futuristischer als es ist", versichert Gottschalk, denn bereits heute implantiere man zum gleichen Zweck Elektroden ins Hirn der Patienten - mit dem deutlichen Nachteil, dass man nicht bestimmen könne, welche Nervenzellen beeinflusst werden. Dadurch sind unerwünschte Nebeneffekten möglich. "Mithilfe der Optogenetik ließen sich ganz gezielt nur die erwünschten Neuronen ansteuern, ausserdem sind Lichtfasern viel dünner und weniger invasiv als Drahtelektroden", so Gottschalk. Weitere medizinische Anwendungen der Optogenetik stellen Versuche dar, durch Expression des Algenproteins ChR2 im Auge bestimmte Formen von Blindheit zu kurieren, bei denen die Photorezeptorzellen degenerieren (Retinitis pigmentosa).

Auch elementare Mechanismen der Kommunikation zwischen Neuronen mithilfe chemischer Botenstoffe (Neurotransmitter) ähneln sich bei Fadenwurm und Säugetieren, so dass sie sich auch in C. elegans (und dort um Einiges einfacher) untersuchen lassen. Gottschalks Arbeitsgruppe kann Nervenzellen mit Licht sehr präzise und mit geringem experimentellem Aufwand stimulieren. Auf diese Weise können molekulare Defekte in der Neurotransmissionsmaschinerie der Nervenzellen von genetischen Mutanten exakt charakterisiert werden. Die Gruppe benutzt weiterhin biochemische Methoden, um Proteinkomplexe und Organellen aus dem Nervensystem des Fadenwurms zu isolieren und dabei neue Proteine zu entdecken, die für die Nervensystemfunktion bedeutsam sind.

Alexander Gottschalk hat seit dem 1. März eine von der Deutschen Forschungsgemeinschaft geförderte Heisenbergprofessur inne. Er arbeitet am Institut für Biochemie der Goethe-Universität in Bereich 'molekulare Zellbiologie und Neurobiochemie' und ist zudem Adjunct Investigator im Exzellenzcluster Makromolekulare Komplexe. Nach einem Grundstudium der Chemie in Frankfurt (bei einigen Professoren, die heute seine Kollegen sind), führte ihn sein wissenschaftlicher Werdegang über Marburg, Edinburgh (UK) und San Diego (USA) 2004 zurück an die Goethe-Universität. Dort war er zunächst sechs Jahre lang Juniorprofessor für molekulare Membranbiologie am Institut für Biochemie. Prof. Gottschalk ist mit einer Apothekerin verheiratet, das Paar hat drei Töchter (sieben, sechs und ein Jahr/e alt).

Informationen: Prof. Alexander Gottschalk, Institut für Biochemie, Campus Riedberg, Tel: (069)798-29261, a.gottschalk@em.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,

E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Polymere aus Bor produzieren
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Modularer Genverstärker fördert Leukämien und steuert Wirksamkeit von Chemotherapie
18.01.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten