Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronale Koordination - Aus der Zeit gefallen

08.07.2015

LMU-Forscher zeigen, welches Hirnareal die zeitliche Struktur der neuronalen Aktivität bei räumlicher Orientierung und Gedächtnisleistungen sichert.

Die Nervenzellen im Hippocampus und im entorhinalen Cortex sind entscheidend für das Gedächtnis und die räumliche Orientierung. Ein zentraler Mechanismus ist die genaue zeitliche und räumliche Abstimmung der Nervenzellen untereinander.


Grafik: Sebastian Kaulitzki / fotolia.com

Wie diese neuronale Koordination funktioniert, ist eine der zentralen Fragen der neurowissenschaftlichen Forschung. Eine Studie von Neurobiologen um Professor Christian Leibold von der LMU und Professor Stefan Leutgeb von der UC San Diego zeigt nun, dass der entorhinale Cortex vor allem die zeitliche Struktur der neuronalen Antworten des Hippocampus beeinflusst. Über ihre Ergebnisse berichten die Neurowissenschaftler aktuell in der Fachzeitschrift Nature Neuroscience.

Gemeinsam haben die Forscher aus München und San Diego Daten neu ausgewertet, die von Tieren stammen, die medial entorhinale Verletzungen haben. „Da Hippocampus und medialer entorhinaler Cortex miteinander rückgekoppelt verbunden sind, bieten Tiere mit derartigen Läsionen eine einmalige Gelegenheit, die neuronalen Aktivitäten in den isolierten Hirnarealen einzeln zu untersuchen“, sagt Christian Leibold.

Eine Frage des Timings

Die Daten wurden ursprünglich großteils von der LMU-Doktorandin Magdalene Schlesiger an der Universität San Diego erhoben, um zu erforschen, ob sich auch bei Tieren ohne medialen entorhinalen Cortex räumliche neuronale Aktivität im Hippocampus nachweisen lässt. Dafür wurden die neuronalen Aktionspotenziale und deren Abfolge in den Hirnarealen von Ratten mit Läsionen im medialen entorhinalen Cortex gemessen, wenn diese auf derselben Strecke hin- und herliefen.

Diese Daten wurden nun im Rahmen eines DFG-geförderten Kooperationsprojekts in München und San Diego neu ausgewertet, wobei sich die Forscher dabei auf das Timing der neuronalen Aktivität konzentriert haben. „Die zeitliche Koordination der neuronalen Aktivität ist wichtig für Lernen und Gedächtnis. Sie ist die wichtigste treibende Kraft für synaptische Plastizität“, erläutert Christian Leibold den Ansatz ihres Zugangs.

Die Auswertung der Daten zeigt, dass der mediale entorhinale Cortex hauptsächlich für die zeitliche Abstimmung der neuronalen Aktivität wichtig ist. Das hat entscheidende Auswirkungen für die Leistungsfähigkeit des Gehirns: „Fehlt der mediale entorhinale Cortex, sind trotz intaktem Hippocampus sämtliche Gedächtnisprozesse gestört, die mit episodischem Lernen zu tun haben, wie viele bisherige Experimente und Theorien vermuten lassen“, sagt Leibold.

Kontakt:
Professor Christian Leibold
Computational Neuroscience
Department Biology II der LMU
Tel: 089 / 2180-74802
E-Mail: leibold@bio.lmu.de
http://www.neuro.bio.lmu.de/members/comp_neuro_leibold/leibold_c/index.html

Publikation:
Magdalene Schlesiger u.a.:
The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity
DOI: 10.1038/nn.4056
In: Nature Neuroscience 2015
http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4056.html

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungsnachrichten

Aus dem Labor auf die Schiene: Forscher des HI-ERN planen Wasserstoffzüge mit LOHC-Technologie

19.04.2018 | Verkehr Logistik

Neuer Wirkmechanismus von Tumortherapeutikum entdeckt

19.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics