Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronal activity induces tau release from healthy neurons

15.02.2013
Researchers from King’s College London have discovered that neuronal activity can stimulate tau release from healthy neurons in the absence of cell death.

The results published by Diane Hanger and her colleagues in EMBO reports show that treatment of neurons with known biological signaling molecules increases the release of tau into the culture medium. The release of tau from cortical neurons is therefore a physiological process that can be regulated by neuronal activity.

Tau proteins stabilize microtubules, the long threads of polymers that help to maintain the structure of the cell. However, in Alzheimer’s disease or certain types of dementia, tau accumulates in neurons or glial cells, where it contributes to neurodegeneration.

In addition to intracellular aggregation, recent experiments have shown that tau is released from neuronal cells and taken up by neighboring cells, which allows the spread of aggregated tau across the brain. This release could occur passively from dying neuronal cells, though some evidence suggests it might take place before neuronal cell death and neurodegeneration. The new findings indicate that tau release is an active process in healthy neurons and this could be altered in diseased brains.

“Our findings suggest that altered tau release is likely to occur in response to changes in neuronal excitability in the Alzheimer’s brain. Secreted tau could therefore be involved in the propagation of tau pathology in tauopathies, a group of neurodegenerative diseases associated with the accumulation of tau proteins in the brain,” commented Diane Hanger, Reader in the Department of Neuroscience at King’s College London. In these experiments, Amy Pooler, the lead author, revealed that molecules such as potassium chloride, glutamate or an AMPA receptor agonist could release tau from cortical neurons in an active physiological process that is, at least partially, dependent on pre-synaptic vesicle secretion.

The new findings by the scientists indicate that tau has previously unknown roles in biological signaling between cells, in addition to its well-established role in stabilizing microtubules.

“We believe that targeting the release of tau could be explored as a new therapeutic approach for the treatment of Alzheimer’s disease and related tauopathies,” said Hanger. Additional studies are needed in model organisms to test this hypothesis further.

Physiological release of endogenous tau is stimulated by neuronal activity

Amy M Pooler, Emma C Phillips, Dawn HW Lau, Wendy Noble, Diane P Hanger

Read the paper:
http://www.nature.com/embor/journal/vaop/ncurrent/full/embor201315a.html
doi: 10.1038/embor.2013.15
Further information on EMBO reports is available at http://www.nature.com/embor
Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
Barbara Pauly
Editor
pauly@embo.org
Tel: +49 6221 8891 109
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to sup-port talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their interna-tional reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | idw
Further information:
http://www.embo.org
http://www.nature.com/embor

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Galapagos-Vulkanismus: Überraschend explosiv

Internationales Vulkanologen-Team präsentiert neue Erkenntnisse zur Eruptions-Geschichte

Vor 8 bis 16 Millionen Jahren gab es im Gebiet der heutigen Galapagos-Inseln einen hochexplosiven Vulkanismus. Das zeigt erstmals die Auswertung von...

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Wie Solarzellen helfen, Knochenbrüche zu finden

FAU-Forscher verwenden neues Material für Röntgendetektoren

Nicht um Sonnenlicht geht es ihnen, sondern um Röntgenstrahlen: Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit...

Im Focus: Festkörper-Photonik ermöglicht extrem kurzwellige UV-Strahlung

Mit ultrakurzen Laserpulsen haben Wissenschaftler aus dem Labor für Attosekundenphysik in dünnen dielektrischen Schichten EUV-Strahlung erzeugt und die zugrunde liegenden Mechanismen untersucht.

Das Jahr 1961, die Erfindung des Lasers lag erst kurz zurück, markierte den Beginn der nichtlinearen Optik und Photonik. Denn erstmals war es Wissenschaftlern...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Cannabis – eine andauernde Kontroverse

29.05.2015 | Veranstaltungen

Frauen können nicht alles haben - Männer aber schon?!

29.05.2015 | Veranstaltungen

13. Koblenzer eLearning Tage

28.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Galapagos-Vulkanismus: Überraschend explosiv

29.05.2015 | Geowissenschaften

"Drittes Auge": Hightech-Einkaufshilfe für Blinde

29.05.2015 | Innovative Produkte

Brüchiges Erbgut: Neuer Therapie-Ansatz gegen Speiseröhrenkrebs

29.05.2015 | Biowissenschaften Chemie