Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues zur zellulären Stressbewältigung

22.05.2013
Konstanzer Biologen tragen zur Entwicklung neuer Chemotherapeutika bei

Wird die Erbsubstanz (DNA) einer Zelle durch zelleigene Stoffwechselprodukte oder durch von außen kommende toxische Substanzen geschädigt, so löst dies augenblicklich die Aktivierung von Enzymen der Familie der Poly(ADP-Ribose)-Polymerasen aus.

Dies schützt die Zelle vor potenziell krebsauslösenden Mutationen. Wissenschaftlerinnen und Wissenschaftler des Arbeitsbereichs Molekulare Toxikologie unter Leitung von Prof. Dr. Alexander Bürkle haben an der Universität Konstanz in enger Zusammenarbeit mit dem Massachusetts Institute of Technology (MIT), Boston, USA, eine neue massenspektrometrische Methode entwickelt, um Poly(ADP-Ribose) in Zellen zu quantifizieren.

Dies kann zur Entwicklung neuer Chemotherapeutika beitragen. Die Ergebnisse der Studie werden in einer der kommenden Ausgaben der Zeitschrift „Chemical Biology“ der American Chemical Society (ACS) veröffentlicht und sind bereits vorab in der Online-Version der Zeitschrift unter dem Link (http://pubs.acs.org/doi/abs/10.1021/cb400170b) verfügbar.

Den Wissenschaftlerinnen und Wissenschaftlern ist es gelungen, eine neue bioanalytische Methode zu entwickeln, mit der das Nukleinsäure-ähnliche Biopolymer Poly(ADP-Ribose) in Zellen und Geweben mit bisher unerreichter Sensitivität und Spezifität nachgewiesen und exakt quantifiziert werden kann. Wird die DNA einer Zelle von innen etwa durch freie Radikale oder von außen, beispielsweise durch die Inhaltsstoffe des Zigarettenrauchs oder auch – bei der Tumortherapie – durch Krebsmedikamente, geschädigt, führt dies bereits innerhalb von Sekunden nach Auftreten des DNA-Schadens zur chemischen Ankopplung von Poly(ADP-Ribose) an eine Vielzahl zellulärer Proteine. Es wird angenommen, dass hierdurch etliche zelleigene „DNA-Reparaturwerkzeuge“ gezielt an die Schadensstelle herangeführt werden und somit verschiedene Reparaturmechanismen in der Zelle unterstützt und koordiniert werden.

Derzeit befinden sich etliche pharmakologische Hemmstoffe dieser Poly(ADP-Ribosyl)ierungs-Reaktion als Tumortherapeutika in der klinischen Entwicklung, da sie die DNA-schädigende Wirkung etablierter Tumortherapien verstärken. Die dabei durch bestimmte Krebsmedikamente absichtlich herbeigeführten DNA-Schäden sollen die Tumorzellen in den Zelltod treiben. Wenn die Tumorzellen diese Schäden jedoch schnell reparieren können, haben sie eine verbesserte Chance zu überleben, was im Sinne der Therapie unerwünscht ist. Bei einigen Tumoren mit spezieller genetischer Konstellation, wie zum Beispiel erblichem Brustkrebs, können Hemmstoffe dieser Poly(ADP-Ribosyl)ierung sogar direkt tumorhemmend wirken.

Die Forscher konnten zeigen, dass mit der neuen Methode selbst die extrem geringe Poly(ADP-Ribose)-Menge problemlos messbar ist, die unter stressfreien Bedingungen in der Zelle vorliegen. Ebenso konnten sie bestätigen, dass diese Menge nach DNA-Schädigung sehr rasch um mehr als das Hundertfache ansteigt. Außerdem zeigt die Studie, dass die zelluläre Stressantwort in Blutzellen verschiedener Individuen ausgesprochen unterschiedlich ausfallen kann, was sowohl in der Krebsentstehung als auch in der Krebsbehandlung von Bedeutung sein kann.

„Wir glauben, dass unsere Methode ein völlig neues Fenster zur Erforschung der zellulären Poly(ADP-Ribosyl)ierungs-Reaktion eröffnet und dass dies gerade auch bei der Medikamentenentwicklung Anwendung finden kann“, so Dr. Aswin Mangerich, Habilitand im Arbeitsbereich Molekulare Toxikologie und gleichzeitig Gastwissenschaftler am MIT. Er und Dr. Rita Martello, die im Rahmen ihrer kürzlich abgeschlossenen Doktorarbeit innerhalb der Graduiertenschule „Chemische Biologie“ an der Entwicklung dieser Methode gearbeitet hat, sind zusammen mit Alexander Bürkle die federführenden Autoren der Publikation. Weitere Autoren sind Dr. Sabine Sass, eine ehemalige Diplomandin am Arbeitsbereichs Molekulare Toxikologie, und Prof. Dr. Peter Dedon am MIT, ein weltweit führender Wissenschaftler auf dem Gebiet der Quantitativen Massenspektrometrie von Nukleinsäuren.

Das Projekt wurde von der Deutschen Forschungsgemeinschaft (DFG) über die Konstanzer Graduiertenschule „Chemische Biologie“ und den Sonderforschungsbereich (SFB) „Chemical and Biological Principles of Cellular Proteostasis“ gefördert.

Originalveröffentlichung:
R. Martello#, A. Mangerich#, S. Sass, P. C. Dedon and A. Bürkle (2013). "Quantification of cellular poly(ADP-ribosyl)ation by stable isotope dilution mass spectrometry reveals tissue- and drug-dependent stress response dynamics." ACS Chemical Biololgy. [Epub ahead of print] [#these authors contributed equally].

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de

Dr. Aswin Mangerich
Universität Konstanz
Molekulare Toxikologie
Fachbereich Biologie
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-4067
E-Mail: aswin.mangerich@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics