Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Werkzeug für die Systembiologie - Hypergraphen ahmen komplexe biologische Prozesse nach

26.06.2009
Am Institut für Bioinformatik und Systembiologie des Helmholtz Zentrums München entwickelt eine Arbeitsgruppe unter Leitung von Prof. Fabian Theis mathematische Modelle, die komplizierte Signalübertragungen auf Zellebene nachahmen.

Zusammen mit Magdeburger Wissenschaftlern zeigte Theis, welche bedeutsame Rolle dabei Hypergraphen als Werkzeug auch in der Systembiologie einnehmen.

Langfristiges Ziel ist es, damit die molekularen Ursachen komplexer Erkrankungen zu erforschen und neue Therapieansätze zu entwickeln.

Leben ist mehr als die Summe seiner Teile und Bio-Netzwerke wie Zellen, Organe oder Lebewesen zeichnen sich durch eine Vielzahl interagierender Komponenten aus. Um die komplexen Systeme besser verstehen zu können, entwickelte sich eine moderne Wissenschaft: Die Computational Biology beschreibt Lebensprozesse mathematisch exakt. Unter Leitung von Dr. Dr. Fabian Theis entwickelt eine Arbeitsgruppe am Helmholtz Zentrum München mathematische Modelle, die auf biologischem Wissen und experimentellen Daten beruhen. Das Interesse der Wissenschaftler gilt unter anderem den erst in jüngster Zeit entdeckten microRNAs, sehr kurzen RNA-Molekülen, die nicht in Proteine übersetzt werden, sondern andere Gene regulieren.

Ein Gebilde aus Knoten mitsamt Kanten dazwischen heißt Graph. Die Knoten stehen für Proteine, Stoffwechselprodukte, Gene oder andere Substanzen, die Kanten für Beziehungen zwischen diesen Stoffen - beispielsweise "enthält", "verbindet sich mit" oder "katalysiert". Graphen zählen zu den wichtigsten Rüstzeugen der Wissenschaftler. Ein einfaches Beispiel: Beim Sauerstofftransport wird Sauerstoff an den roten Blutfarbstoff angelagert. Das Hämoglobin geht in das Oxyhämoglobin über. Ersetzt man Hämoglobin und Oxyhämoglobin durch jeweils einen Punkt, einen so genannten Knoten, und die Verbindung zwischen den beiden Molekülen durch eine Linie ("Kante"), so erhält man einen Graphen.

Die Kanten eines einfachen Graphen dürfen höchstens zwei Knoten miteinander oder einen Knoten mit sich selbst verbinden. Das reicht nicht aus, um die komplizierten Vorgänge des Lebens genau zu modellieren. Mit Hypergraphen, in denen eine Kante beliebig viele Knoten verbinden darf, gelingt dies weitaus besser.

"Hypergraphen werden in anderen Gebieten wie der Mathematik, Physik oder in den Sozialwissenschaftern oft benutzt", erklärt Fabian Theis. "Sie sollten aber auch in der Biologie stärker zum Einsatz kommen, denn sie eröffnen uns großartige Möglichkeiten, wirklichkeitsnahe Modelle zu entwickeln."

Dies verdeutlicht Theis an zahlreichen Beispielen. Wichtige Daten über die Genomaktivität erhalten Wissenschaftler, indem sie miteinander interagierende Gruppen von Proteinen identifizieren. Um Komponenten von Multiproteinkomplexen zu identifizieren, wird seit Jahren die so genannte Tandem-Affinitäts-Reinigung (Tandem Affinity Purification, TAP) verwendet. TAP-Daten können in einem Hypergraphen dargestellt werden, in dem eine Kante die verschiedenen miteinander verbundenen Proteine eines Komplexes darstellt. Gibt man TAP-Ergebnisse hingegen in einem gewöhnlichen Graphen wieder, so kann man zwar erkennen, welche beiden Proteine miteinander eine Bindung eingegangen sind. Es ist jedoch nicht mehr möglich, die Komplexbildungen zu rekonstruieren. Wichtige Informationen sind verloren gegangen.

Inzwischen stehen relativ große Hypergraphen zur Verfügung, die Genregulationen oder Wechselwirkungen zwischen Proteinen darstellen. Forscher fügen mittlerweile auch statistische Informationen in einen Hypergraphen ein. Die Anwendungsmöglichkeiten sind vielfältig. Ein Beispiel sind Hypergraphen, welche statistische Informationen über Gendefekte und damit in Zusammenhang stehende Krankheiten enthalten. Auf diese Weise kann man rasch erfahren, wie häufig eine genetisch bedingte Erkrankung auftritt - eine Information von hohem Interesse.

Mittlerweile gelingt es mit Hypergraphen außerordentlich gut, biologische Prozesse zu modellieren. Dies ist unter anderem für die Diagnose, Prävention und Therapie von Erkrankungen von Bedeutung. Die Anwendungsmöglichkeiten der Hypergraphen sind aber noch längst nicht ausgeschöpft. Es ist daher zu erwarten, dass sie in naher Zukunft erheblich an Bedeutung gewinnen werden.

Weitere Informationen

Originalpublikation
Steffen Klamt, Utz-Uwe Haus, Fabian Theis, Hypergraphs and Cellular Networks, PLoS Comput Biol 5(5) 2009 (e1000385. doi:10.1371/journal.pcbi.1000385)

Das Institut für Bioinformatik und Systembiologie (IBIS) des Helmholtz Zentrums München (Direktor: Prof. Dr. Werner Mewes) beschäftigt sich mit der systematischen Funktions- und Strukturanalyse von Proteinen mit Schwerpunkten in der Charakterisierung von Modellgenomen wie Hefe, Arabidopsis thaliana und Maus. Zentrales Ziel ist es, Methoden zu entwickeln, um molekularbiologische Daten zu interpretieren und Informationen, die sich nicht unmittelbar durch die Anwendung von Algorithmen aus der Sequenz berechnen lassen, vorherzusagen.

Das Helmholtz Zentrum München ist das deutsche Forschungszentrum für Gesundheit und Umwelt. Als führendes Zentrum mit der Ausrichtung auf Environmental Health erforscht es chronische und komplexe Krankheiten, die aus dem Zusammenwirken von Umweltfaktoren und individueller genetischer Disposition entstehen. Das Helmholtz Zentrum München beschäftigt rund 1680 Mitarbeiterinnen und Mitarbeiter. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens auf einem 50 Hektar großen Forschungscampus. Das Helmholtz Zentrum München gehört der größten deutschen Wissenschaftsorganisation, der Helmholtz-Gemeinschaft an, in der sich 15 naturwissenschaftlichtechnische und medizinisch-biologische Forschungszentren mit insgesamt 26500 Beschäftigten zusammengeschlossen haben.

Sven Winkler, Leiter der Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1 85764 Neuherberg. Tel.: ++49 (0)89-3187-3946, Fax: ++49 (0)89-3187-3324, E-Mail: presse@helmholtz-muenchen.de

Michael van den Heuvel | idw
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie