Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Werkzeug für die Systembiologie - Hypergraphen ahmen komplexe biologische Prozesse nach

26.06.2009
Am Institut für Bioinformatik und Systembiologie des Helmholtz Zentrums München entwickelt eine Arbeitsgruppe unter Leitung von Prof. Fabian Theis mathematische Modelle, die komplizierte Signalübertragungen auf Zellebene nachahmen.

Zusammen mit Magdeburger Wissenschaftlern zeigte Theis, welche bedeutsame Rolle dabei Hypergraphen als Werkzeug auch in der Systembiologie einnehmen.

Langfristiges Ziel ist es, damit die molekularen Ursachen komplexer Erkrankungen zu erforschen und neue Therapieansätze zu entwickeln.

Leben ist mehr als die Summe seiner Teile und Bio-Netzwerke wie Zellen, Organe oder Lebewesen zeichnen sich durch eine Vielzahl interagierender Komponenten aus. Um die komplexen Systeme besser verstehen zu können, entwickelte sich eine moderne Wissenschaft: Die Computational Biology beschreibt Lebensprozesse mathematisch exakt. Unter Leitung von Dr. Dr. Fabian Theis entwickelt eine Arbeitsgruppe am Helmholtz Zentrum München mathematische Modelle, die auf biologischem Wissen und experimentellen Daten beruhen. Das Interesse der Wissenschaftler gilt unter anderem den erst in jüngster Zeit entdeckten microRNAs, sehr kurzen RNA-Molekülen, die nicht in Proteine übersetzt werden, sondern andere Gene regulieren.

Ein Gebilde aus Knoten mitsamt Kanten dazwischen heißt Graph. Die Knoten stehen für Proteine, Stoffwechselprodukte, Gene oder andere Substanzen, die Kanten für Beziehungen zwischen diesen Stoffen - beispielsweise "enthält", "verbindet sich mit" oder "katalysiert". Graphen zählen zu den wichtigsten Rüstzeugen der Wissenschaftler. Ein einfaches Beispiel: Beim Sauerstofftransport wird Sauerstoff an den roten Blutfarbstoff angelagert. Das Hämoglobin geht in das Oxyhämoglobin über. Ersetzt man Hämoglobin und Oxyhämoglobin durch jeweils einen Punkt, einen so genannten Knoten, und die Verbindung zwischen den beiden Molekülen durch eine Linie ("Kante"), so erhält man einen Graphen.

Die Kanten eines einfachen Graphen dürfen höchstens zwei Knoten miteinander oder einen Knoten mit sich selbst verbinden. Das reicht nicht aus, um die komplizierten Vorgänge des Lebens genau zu modellieren. Mit Hypergraphen, in denen eine Kante beliebig viele Knoten verbinden darf, gelingt dies weitaus besser.

"Hypergraphen werden in anderen Gebieten wie der Mathematik, Physik oder in den Sozialwissenschaftern oft benutzt", erklärt Fabian Theis. "Sie sollten aber auch in der Biologie stärker zum Einsatz kommen, denn sie eröffnen uns großartige Möglichkeiten, wirklichkeitsnahe Modelle zu entwickeln."

Dies verdeutlicht Theis an zahlreichen Beispielen. Wichtige Daten über die Genomaktivität erhalten Wissenschaftler, indem sie miteinander interagierende Gruppen von Proteinen identifizieren. Um Komponenten von Multiproteinkomplexen zu identifizieren, wird seit Jahren die so genannte Tandem-Affinitäts-Reinigung (Tandem Affinity Purification, TAP) verwendet. TAP-Daten können in einem Hypergraphen dargestellt werden, in dem eine Kante die verschiedenen miteinander verbundenen Proteine eines Komplexes darstellt. Gibt man TAP-Ergebnisse hingegen in einem gewöhnlichen Graphen wieder, so kann man zwar erkennen, welche beiden Proteine miteinander eine Bindung eingegangen sind. Es ist jedoch nicht mehr möglich, die Komplexbildungen zu rekonstruieren. Wichtige Informationen sind verloren gegangen.

Inzwischen stehen relativ große Hypergraphen zur Verfügung, die Genregulationen oder Wechselwirkungen zwischen Proteinen darstellen. Forscher fügen mittlerweile auch statistische Informationen in einen Hypergraphen ein. Die Anwendungsmöglichkeiten sind vielfältig. Ein Beispiel sind Hypergraphen, welche statistische Informationen über Gendefekte und damit in Zusammenhang stehende Krankheiten enthalten. Auf diese Weise kann man rasch erfahren, wie häufig eine genetisch bedingte Erkrankung auftritt - eine Information von hohem Interesse.

Mittlerweile gelingt es mit Hypergraphen außerordentlich gut, biologische Prozesse zu modellieren. Dies ist unter anderem für die Diagnose, Prävention und Therapie von Erkrankungen von Bedeutung. Die Anwendungsmöglichkeiten der Hypergraphen sind aber noch längst nicht ausgeschöpft. Es ist daher zu erwarten, dass sie in naher Zukunft erheblich an Bedeutung gewinnen werden.

Weitere Informationen

Originalpublikation
Steffen Klamt, Utz-Uwe Haus, Fabian Theis, Hypergraphs and Cellular Networks, PLoS Comput Biol 5(5) 2009 (e1000385. doi:10.1371/journal.pcbi.1000385)

Das Institut für Bioinformatik und Systembiologie (IBIS) des Helmholtz Zentrums München (Direktor: Prof. Dr. Werner Mewes) beschäftigt sich mit der systematischen Funktions- und Strukturanalyse von Proteinen mit Schwerpunkten in der Charakterisierung von Modellgenomen wie Hefe, Arabidopsis thaliana und Maus. Zentrales Ziel ist es, Methoden zu entwickeln, um molekularbiologische Daten zu interpretieren und Informationen, die sich nicht unmittelbar durch die Anwendung von Algorithmen aus der Sequenz berechnen lassen, vorherzusagen.

Das Helmholtz Zentrum München ist das deutsche Forschungszentrum für Gesundheit und Umwelt. Als führendes Zentrum mit der Ausrichtung auf Environmental Health erforscht es chronische und komplexe Krankheiten, die aus dem Zusammenwirken von Umweltfaktoren und individueller genetischer Disposition entstehen. Das Helmholtz Zentrum München beschäftigt rund 1680 Mitarbeiterinnen und Mitarbeiter. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens auf einem 50 Hektar großen Forschungscampus. Das Helmholtz Zentrum München gehört der größten deutschen Wissenschaftsorganisation, der Helmholtz-Gemeinschaft an, in der sich 15 naturwissenschaftlichtechnische und medizinisch-biologische Forschungszentren mit insgesamt 26500 Beschäftigten zusammengeschlossen haben.

Sven Winkler, Leiter der Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1 85764 Neuherberg. Tel.: ++49 (0)89-3187-3946, Fax: ++49 (0)89-3187-3324, E-Mail: presse@helmholtz-muenchen.de

Michael van den Heuvel | idw
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften