Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren zum Nachweis eines Tumormarkers in bösartigen Lymphomen

23.11.2017

Neue therapeutische Ansätze in der Krebsforschung haben das Ziel spezifische Überlebenssignale in Tumorzellen auszuschalten. In vielen Fällen reichen die diagnostischen Möglichkeiten nicht aus um vorherzusagen, welche Patienten von so einer zielgerichteten ‚Präzisions‘-Therapie tatsächlich profitieren können. Forscher am Helmholtz Zentrum München entwickelten einen chemischen Sensor mit dem sich die unkontrollierte Aktivierung von Tumor-assoziierten Signalwegen in Blutkrebszellen nachweisen lässt. Solche Sensoren können die Grundlage für Diagnostika bilden, um eine optimale, individualisierte Therapie für Krebspatienten zu finden und den Erfolg einer Behandlung zu überwachen.

Das diffus großzellige B-Zell-Lymphom (DLBCL) ist unter den Nicht-Hodgkin Lymphomen die meist verbreitete Blutkrebserkrankung, an der jährlich circa 5 von 100.000 Personen erkranken. Patienten einer Untergruppe von DLBCL weisen eine 5-Jahres-Überlebensrate von unter 50 Prozent auf.


Tumorgewebeschnitt aggressiver DLBCL (20x Vergrößerung, H+E-Färbung)

Bildquelle: D. Nagel

Diese bösartige Untergruppe von Lymphomen zeichnet sich durch andauernde Aktivität der Protease MALT1 aus, ein Eiweiß (Protein) das wiederum andere Proteine spalten und somit abbauen kann. Durch die enzymatische Aktivität treibt die MALT1 Protease das Überleben und das Wachstum der Lymphome an. Der Forschergruppe um Prof. Dr. Daniel Krappmann gelang die Entdeckung erster Hemmstoffe gegen die MALT1 Protease, was einen neuen vielversprechenden Ansatz für die Behandlung dieser schwer heilbaren Krebsform darstellt.

Da bisher eine standardisierte Klassifizierung verschiedener Lymphome nicht möglich ist, hat das Team um Prof. Krappmann ein Testverfahren für DLBCL entwickelt, in dem MALT1-Aktivität als Unterscheidungsmerkmal dient. Durch chemische Synthese konnte ein fluoreszierender Sensor hergestellt werden, der sehr spezifisch an die aktive MALT1 Protease koppelt.

In der Tat zeigen die Analysen, dass sich Tumorproben von Lymphompatienten basierend auf der Aktivität von MALT1 unterscheiden lassen. In einer gezielten Studie konnten die Wissenschaftler mit Hilfe des MALT1-Sensors bestimmen, bei welchen genetischen Veränderungen der Krebszellen eine Behandlung mit MALT1-Hemmstoffen besonders vielversprechend ist. Darüber hinaus gelang es in Kooperation mit Medizinern am Universitätsklinikum Hannover die Aktivität von MALT1 auch in Mantelzelllymphomen nachzuweisen.

Weitere Arbeiten beleuchteten die MALT1-Aktivität in Immunprozessen und in Kooperation mit Wissenschaftlern am Francis Crick Institut (London) gelang der Nachweis der fehlregulierten MALT1 Aktivität bei Schuppenflechte (Psoriasis).

Gegenwärtige Arbeiten fokussieren sich darauf, ob mit Hilfe der MALT1-Sensoren ein einfaches Diagnostikverfahren für Lymphome aufgebaut werden kann. Darüber hinaus wird der Einsatz von MALT1-Sensoren in anderen Krebs- und Immunerkrankungen geprüft mit dem Ziel, die Einsatzmöglichkeiten von MALT1-basierten Hemmstoffen zu erweitern.

Wichtige Publikationen aus der Förderung:
Eitelhuber, A.C. et al., Activity-based probes for detection of active MALT1 paracaspase in immune cells and lymphomas. Chem Biol, 2015. 22(1): p. 129-38.
Nagel, D., et al., Combinatorial BTK and MALT1 inhibition augments killing of CD79 mutant diffuse large B cell lymphoma. Oncotarget, 2015. 6(39): p. 42232-42.
Dai, B. et al. B-cell receptor-driven MALT1 activity regulates MYC signaling in mantle cell lymphoma. Blood, 2017. 129(3): p. 333-346.

Kontakt
Prof. Dr. Daniel Krappmann
Abteilung Zelluläre Signalintegration (AZS)
Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Institut für molekulare Toxikologie und Pharmakologie
Ingolstädter Landstr. 1
85764 Neuherberg
Tel.: +49 (0)89-3187-3461
daniel.krappmann@helmholtz-muenchen.de

www.helmholtz-muenchen.de/azs 

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören.

Die Abteilung Zelluläre Signalintegration (AZS) geleitet von Prof. Krappmann im Institut für Molekulare Toxikologie und Pharmakologie forscht für ein besseres Verständnis von Signalnetzwerken. Dabei stehen das Zusammenspiel von Proteinen in Komplexen und die Auswirkungen von Modifikationen im Mittelpunkt. Ziel ist die Aufklärung von Fehlregulation der Signalkomplexe in Immun- und Entzündungserkrankungen sowie Lymphomen. Neue Therapien werden in Proof-of-Konzept Studien getestet.

Die Wilhelm Sander-Stiftung hat dieses Forschungsprojekt in zwei Förderphasen mit rund 310.000 Euro unterstützt. Stiftungszweck ist die Förderung der medizinischen Forschung, insbesondere von Projekten im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden insgesamt über 220 Millionen Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Damit ist die Wilhelm Sander-Stiftung eine der bedeutendsten privaten Forschungsstiftungen im deutschen Raum. Sie ging aus dem Nachlass des gleichnamigen bayerischen Unternehmers hervor, der 1973 verstorben ist.

Weitere Informationen: http://wilhelm-sander-stiftung.de

Bernhard Knappe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik