Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren zur Bestimmung der Zelladhäsionskraft

26.07.2011
Biophysiker der Universität Heidelberg kombinieren Pikosekundenlaser und optisches Mikroskop

Biophysiker der Universität Heidelberg haben ein neues Verfahren entwickelt, mit dem sich die sogenannte Zelladhäsionskraft bestimmen lässt. Dabei handelt es sich um die Kraft, die Zellen aufbauen, wenn sie an Oberflächen haftend wachsen.

Um diese zuverlässig quantitativ bestimmen zu können, haben die Wissenschaftler der Arbeitsgruppe Physikalische Chemie von Biosystemen unter der Leitung von Prof. Dr. Motomu Tanaka einen Pikosekundenlaser mit einem optischen Mikroskop kombinert. Zudem konnte das Forscherteam am Physikalisch-Chemischen Institut der Ruperto Carola zeigen, dass die mikromechanische Umgebung von Zellen mit Hilfe bestimmter Polymere dynamisch reguliert werden kann. Die Forschungsergebnisse wurden im „Journal of the American Chemical Society“ veröffentlicht.

Um die Zelladhäsionskraft erfassen zu können, muss der kritische Druck bestimmt werden, der notwendig ist, um wachsende Zellen von ihrer Oberfläche – dem Substrat – zu lösen. Dazu wird ein starker Laserimpuls durch das Objektiv eines Mikroskops an der Oberfläche fokussiert. In der Folge entsteht eine Druckwelle, die sich mit Überschallgeschwindigkeit bewegt. Sie ist stark genug, um die Zellen von ihrem Substrat zu lösen. Über die Laserenergie und den Abstand zwischen dem Laserbrennpunkt und dem Laserziel kann der kritische Druck zur Zellablösung und damit die Zelladhäsionskraft quantitativ bestimmt werden. „Die Kombination von Pikosekundenlaser mit einem optischen Mikroskop ermöglicht eine berührungsfreie Technik, mit der zuverlässige, statistisch verwertbare Werte für eine Vielzahl von Zellen ermittelt werden können“, erläutert Dr. Hiroshi Yoshikawa, der Mitarbeiter der Heidelberger Arbeitsgruppe und derzeit Assistenzprofessor an der Saitama Universität in Japan ist. Derzeit wird diese Technik verwendet, um die Adhäsionskraft verschiedener Zelltypen zu bestimmen, beispielweise bei Blutstammzellen.

In ihren Forschungsarbeiten sind die Heidelberger Wissenschaftler auch der Frage nachgegangen, welches Potenzial sogenannte smarte Hydrogele für die Regulation der mikromechanischen Umgebung von Zellen besitzen. Bei diesen Polymeren lässt sich die Steifigkeit ihrer Oberfläche durch vorsichtige Änderung des pH-Werts umkehrbar um den Faktor 40 regulieren, ohne dabei die Lebensfähigkeit der Zellen nachteilig zu beeinflussen, wie Prof. Tanaka erläutert. Auf eine durch Hydrogele hervorgerufene Änderung der Elastizität ihres Zellsubstrats können Zellen reagieren. Dies ist beispielsweise bei Muskelvorläuferzellen der Fall. Das haben mikroskopische Aufnahmen am Nikon Imaging Center in Heidelberg gezeigt. „Mit Hilfe der neu entwickelten Methode zur Bestimmung der Zelladhäsionskräfte und dem Einsatz smarter Hydrogele lassen sich zum Beispiel die Reaktionen von Zellen, die ihre Form durch Zusammenziehen verändern können, auf mechanische Reize aus ihrer Umgebung hin untersuchen“, erklärt Prof. Tanaka. „Damit können wir erforschen, wie sich ein Reiz, der durch die Härte eines Knochengewebes hervorgerufen wird, im Vergleich zu einem durch die Wechselwirkung mit Bindegewebe hervorgerufenen Reiz auf die Entwicklung von Stammzellen auswirkt.“

Kooperationspartner der Heidelberger Wissenschaftler waren Prof. Steven P. Armes von der University of Sheffield und die britische Firma Biocompatibles Inc., die die Hydrogele synthetisierte.

Originalveröffentlichung:
Hiroshi Y. Yoshikawa, Fernanda F. Rossetti, Stefan Kaufmann, Thomas Kaindl, Jeppe Madsen, Ulrike Engel, Andrew L. Lewis, Steven P. Armes, Motomu Tanaka: “Quantitative Evaluation of Mechanosensing of Cells on Dynamically Tunable Hydrogels“, Journal of the American Chemical Society, 133, 1367 (2011), doi: 10.1021/ja1060615
Kontakt:
Prof. Dr. Motomu Tanaka
Physikalisch-Chemisches Institut
Telefon (06221) 54-4916
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics