Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren zur Bestimmung der Zelladhäsionskraft

26.07.2011
Biophysiker der Universität Heidelberg kombinieren Pikosekundenlaser und optisches Mikroskop

Biophysiker der Universität Heidelberg haben ein neues Verfahren entwickelt, mit dem sich die sogenannte Zelladhäsionskraft bestimmen lässt. Dabei handelt es sich um die Kraft, die Zellen aufbauen, wenn sie an Oberflächen haftend wachsen.

Um diese zuverlässig quantitativ bestimmen zu können, haben die Wissenschaftler der Arbeitsgruppe Physikalische Chemie von Biosystemen unter der Leitung von Prof. Dr. Motomu Tanaka einen Pikosekundenlaser mit einem optischen Mikroskop kombinert. Zudem konnte das Forscherteam am Physikalisch-Chemischen Institut der Ruperto Carola zeigen, dass die mikromechanische Umgebung von Zellen mit Hilfe bestimmter Polymere dynamisch reguliert werden kann. Die Forschungsergebnisse wurden im „Journal of the American Chemical Society“ veröffentlicht.

Um die Zelladhäsionskraft erfassen zu können, muss der kritische Druck bestimmt werden, der notwendig ist, um wachsende Zellen von ihrer Oberfläche – dem Substrat – zu lösen. Dazu wird ein starker Laserimpuls durch das Objektiv eines Mikroskops an der Oberfläche fokussiert. In der Folge entsteht eine Druckwelle, die sich mit Überschallgeschwindigkeit bewegt. Sie ist stark genug, um die Zellen von ihrem Substrat zu lösen. Über die Laserenergie und den Abstand zwischen dem Laserbrennpunkt und dem Laserziel kann der kritische Druck zur Zellablösung und damit die Zelladhäsionskraft quantitativ bestimmt werden. „Die Kombination von Pikosekundenlaser mit einem optischen Mikroskop ermöglicht eine berührungsfreie Technik, mit der zuverlässige, statistisch verwertbare Werte für eine Vielzahl von Zellen ermittelt werden können“, erläutert Dr. Hiroshi Yoshikawa, der Mitarbeiter der Heidelberger Arbeitsgruppe und derzeit Assistenzprofessor an der Saitama Universität in Japan ist. Derzeit wird diese Technik verwendet, um die Adhäsionskraft verschiedener Zelltypen zu bestimmen, beispielweise bei Blutstammzellen.

In ihren Forschungsarbeiten sind die Heidelberger Wissenschaftler auch der Frage nachgegangen, welches Potenzial sogenannte smarte Hydrogele für die Regulation der mikromechanischen Umgebung von Zellen besitzen. Bei diesen Polymeren lässt sich die Steifigkeit ihrer Oberfläche durch vorsichtige Änderung des pH-Werts umkehrbar um den Faktor 40 regulieren, ohne dabei die Lebensfähigkeit der Zellen nachteilig zu beeinflussen, wie Prof. Tanaka erläutert. Auf eine durch Hydrogele hervorgerufene Änderung der Elastizität ihres Zellsubstrats können Zellen reagieren. Dies ist beispielsweise bei Muskelvorläuferzellen der Fall. Das haben mikroskopische Aufnahmen am Nikon Imaging Center in Heidelberg gezeigt. „Mit Hilfe der neu entwickelten Methode zur Bestimmung der Zelladhäsionskräfte und dem Einsatz smarter Hydrogele lassen sich zum Beispiel die Reaktionen von Zellen, die ihre Form durch Zusammenziehen verändern können, auf mechanische Reize aus ihrer Umgebung hin untersuchen“, erklärt Prof. Tanaka. „Damit können wir erforschen, wie sich ein Reiz, der durch die Härte eines Knochengewebes hervorgerufen wird, im Vergleich zu einem durch die Wechselwirkung mit Bindegewebe hervorgerufenen Reiz auf die Entwicklung von Stammzellen auswirkt.“

Kooperationspartner der Heidelberger Wissenschaftler waren Prof. Steven P. Armes von der University of Sheffield und die britische Firma Biocompatibles Inc., die die Hydrogele synthetisierte.

Originalveröffentlichung:
Hiroshi Y. Yoshikawa, Fernanda F. Rossetti, Stefan Kaufmann, Thomas Kaindl, Jeppe Madsen, Ulrike Engel, Andrew L. Lewis, Steven P. Armes, Motomu Tanaka: “Quantitative Evaluation of Mechanosensing of Cells on Dynamically Tunable Hydrogels“, Journal of the American Chemical Society, 133, 1367 (2011), doi: 10.1021/ja1060615
Kontakt:
Prof. Dr. Motomu Tanaka
Physikalisch-Chemisches Institut
Telefon (06221) 54-4916
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Polymere aus Bor produzieren
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Modularer Genverstärker fördert Leukämien und steuert Wirksamkeit von Chemotherapie
18.01.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten