Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verbundprojekt: Wie Medikamente die Blut-Hirn-Schranke überwinden können

17.12.2012
Heidelberger Forscher arbeiten an einer künstlichen Gewebestruktur als Testmodell

Wie lassen sich Wirkstoffe von Medikamenten gezielter als bisher in das menschliche Gehirn transportieren? Diese Frage steht im Mittelpunkt eines Forschungsvorhabens, an dem Wissenschaftler des Instituts für Pharmazie und Molekulare Biotechnologie (IPMB) der Universität Heidelberg beteiligt sind.

Die Heidelberger Forscher wollen dafür eine künstliche Gewebestruktur nachbilden, um den Blutfluss des Körpers zu imitieren. Das Trans-BBbarrier-Projekt, in dem Experten aus fünf Forschungseinrichtungen und Unternehmen in Deutschland zusammenarbeiten, wird vom Bundesministerium für Bildung und Forschung (BMBF) über einen Zeitraum von drei Jahren mit rund 1,44 Millionen Euro gefördert, davon gehen rund 250.000 Euro an das IPMB. Ziel ist die Entwicklung neuer Therapieformen für Erkrankungen des Zentralen Nervensystems.

„Bei der Entwicklung neuer Medikamente gegen Erkrankungen im Zentralen Nervensystem, wie zum Beispiel Epilepsie oder Alzheimer, besteht die größte Hürde oft darin, die Wirkstoffe durch die sogenannte Blut-Hirn-Schranke in das Gehirn zu transportieren“, erklärt Prof. Dr. Gert Fricker, der am IPMB forscht. Wie der Wissenschaftler erläutert, ist die Blut-Hirn-Schranke für viele Moleküle undurchdringbar, da sie den Blutkreislauf vom Zentralen Nervensystem abschottet. Sie verhindert, dass Fremdstoffe, potenziell giftige Stoffwechselprodukte oder Krankheitserreger in Gehirn und Rückenmark eindringen.

Eine Lösung sehen die Wissenschaftler in der Entwicklung von „Transporthilfen“, mit denen den Medikamenten der Übertritt ins Gehirn ermöglicht werden soll. „Allerdings gibt es bisher keine geeigneten Modelle, um die Wirksamkeit solcher Transporthilfen zu überprüfen“, erläutert Prof. Fricker, der die Abteilung Pharmazeutische Technologie und Pharmakologie des IPMB leitet. „Aktuell verfügbare Zellkultursysteme können die Physiologie des Menschen nicht genau genug simulieren, da die Zellen außerhalb ihrer natürlichen Umgebung wichtige Funktionen verlieren“, so der Wissenschaftler. Um dieses Problem zu lösen, soll im Rahmen des Trans-BBbarrier-Projekts ein neuartiges Zellkultur-Modell der Blut-Hirn-Schranke mit verbesserter Zellfunktion entwickelt werden.

Ziel der Heidelberger Wissenschaftler ist es, mit Hilfe der Mikrotechnik die natürliche, physiologische Zellumgebung in einem sogenannten Mikrofluidiksystem nachzubilden. Dazu werden Zellen über elektrische und fluidische Kräfte in ihrer tatsächlichen Gewebestruktur angeordnet. Über Mikrokanäle sollen die Zellen mit einem Nährmedium versorgt werden, um so den Blutfluss des Körpers zu imitieren. „Wir können dann die Wirkstofftests anhand eines Modells durchführen, das der Physiologie des Menschen in besonderer Weise entspricht.“ Die Arbeiten an diesem Verbundprojekt haben im November 2012 begonnen.

Kontakt:
Prof. Dr. Gert Fricker
Institut für Pharmazie und Molekulare Biotechnologie (IPMB)
Telefon (06221) 54-8336
Gert.Fricker@uni-hd.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Chip-Bakterium bei der Katalyse beobachten
10.02.2016 | Universität Leipzig

nachricht „Killer-T-Zellen“ sind nur im Team gegen Viren stark
10.02.2016 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit genaueste optische Einzelionen-Uhr

Als erste Forschergruppe weltweit haben Atomuhren-Spezialisten der Physikalisch-Technischen Bundesanstalt (PTB) jetzt eine optische Einzelionen-Uhr gebaut, die eine bisher nur theoretisch vorhergesagte Genauigkeit erreicht. Ihre optische Ytterbium-Uhr erreichte eine relative systematische Messunsicherheit von 3 E-18. Die Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht.

Als erste Forschergruppe weltweit haben Atomuhren-Spezialisten der Physikalisch-Technischen Bundesanstalt (PTB) jetzt eine optische Einzelionen-Uhr gebaut, die...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Autonome Nanosatelliten in Arbeit

Zwei neue Weltraumprojekte werden an der Universität Würzburg vorbereitet: Sie sollen unter anderem die Beobachtung von Planeten und die autonome Fehlerkorrektur an Bord von Satelliten ermöglichen. Das Bundeswirtschaftsministerium fördert die Projekte mit rund 1,6 Millionen Euro.

Wirbelstürme erkennen, die über den Mars fegen. Meteore detektieren, die auf die Erde hinabstürzen. Ungewöhnliche Blitze erforschen, die aus der Erdatmosphäre...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Fließphänomene an festen Oberflächen: Grenzflächengeschwindigkeit als wichtige Größe nachgewiesen

Wie man bewirken kann, dass Flüssigkeiten auf festen Oberflächen fast wie ein Schlitten gleiten können, haben jetzt Physiker der Saar-Universität gemeinsam mit Forscherkollegen aus Paris gezeigt: Möglich ist das durch Beschichtungen, die an der Grenzfläche zwischen Flüssigkeit und Oberfläche ein Rutschen der Flüssigkeit provozieren. In der Folge vergrößern sich auch die mittlere Fließgeschwindigkeit und der Durchsatz. Gezeigt wurde dies am Verhalten von Tropfen auf verschieden beschichteten Oberflächen beim Übergang in den Gleichgewichtszustand. Die Ergebnisse könnten für die Optimierung industrieller Prozesse nutzbar sein, beispielsweise zur Verarbeitung von Kunststoffen.

Die Studie wurde in der Fachzeitschrift PNAS (Proceedings of the National Academy of Sciences of the United States of America) veröffentlicht.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Deutsche Gesellschaft für Verhaltensmedizin und Verhaltensmodifikation tagt in Mainz

10.02.2016 | Veranstaltungen

Bericht zur weltweiten Lage der Bestäuber

10.02.2016 | Veranstaltungen

18. Chemnitzer Linux-Tage: "Es ist Dein Projekt"

10.02.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit genaueste optische Einzelionen-Uhr

10.02.2016 | Geowissenschaften

Genauer messen in kurzer Zeit

10.02.2016 | Physik Astronomie

Protein steuert Fetteinlagerung und Leberstoffwechsel

10.02.2016 | Förderungen Preise