Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verbundprojekt: Wie Medikamente die Blut-Hirn-Schranke überwinden können

17.12.2012
Heidelberger Forscher arbeiten an einer künstlichen Gewebestruktur als Testmodell

Wie lassen sich Wirkstoffe von Medikamenten gezielter als bisher in das menschliche Gehirn transportieren? Diese Frage steht im Mittelpunkt eines Forschungsvorhabens, an dem Wissenschaftler des Instituts für Pharmazie und Molekulare Biotechnologie (IPMB) der Universität Heidelberg beteiligt sind.

Die Heidelberger Forscher wollen dafür eine künstliche Gewebestruktur nachbilden, um den Blutfluss des Körpers zu imitieren. Das Trans-BBbarrier-Projekt, in dem Experten aus fünf Forschungseinrichtungen und Unternehmen in Deutschland zusammenarbeiten, wird vom Bundesministerium für Bildung und Forschung (BMBF) über einen Zeitraum von drei Jahren mit rund 1,44 Millionen Euro gefördert, davon gehen rund 250.000 Euro an das IPMB. Ziel ist die Entwicklung neuer Therapieformen für Erkrankungen des Zentralen Nervensystems.

„Bei der Entwicklung neuer Medikamente gegen Erkrankungen im Zentralen Nervensystem, wie zum Beispiel Epilepsie oder Alzheimer, besteht die größte Hürde oft darin, die Wirkstoffe durch die sogenannte Blut-Hirn-Schranke in das Gehirn zu transportieren“, erklärt Prof. Dr. Gert Fricker, der am IPMB forscht. Wie der Wissenschaftler erläutert, ist die Blut-Hirn-Schranke für viele Moleküle undurchdringbar, da sie den Blutkreislauf vom Zentralen Nervensystem abschottet. Sie verhindert, dass Fremdstoffe, potenziell giftige Stoffwechselprodukte oder Krankheitserreger in Gehirn und Rückenmark eindringen.

Eine Lösung sehen die Wissenschaftler in der Entwicklung von „Transporthilfen“, mit denen den Medikamenten der Übertritt ins Gehirn ermöglicht werden soll. „Allerdings gibt es bisher keine geeigneten Modelle, um die Wirksamkeit solcher Transporthilfen zu überprüfen“, erläutert Prof. Fricker, der die Abteilung Pharmazeutische Technologie und Pharmakologie des IPMB leitet. „Aktuell verfügbare Zellkultursysteme können die Physiologie des Menschen nicht genau genug simulieren, da die Zellen außerhalb ihrer natürlichen Umgebung wichtige Funktionen verlieren“, so der Wissenschaftler. Um dieses Problem zu lösen, soll im Rahmen des Trans-BBbarrier-Projekts ein neuartiges Zellkultur-Modell der Blut-Hirn-Schranke mit verbesserter Zellfunktion entwickelt werden.

Ziel der Heidelberger Wissenschaftler ist es, mit Hilfe der Mikrotechnik die natürliche, physiologische Zellumgebung in einem sogenannten Mikrofluidiksystem nachzubilden. Dazu werden Zellen über elektrische und fluidische Kräfte in ihrer tatsächlichen Gewebestruktur angeordnet. Über Mikrokanäle sollen die Zellen mit einem Nährmedium versorgt werden, um so den Blutfluss des Körpers zu imitieren. „Wir können dann die Wirkstofftests anhand eines Modells durchführen, das der Physiologie des Menschen in besonderer Weise entspricht.“ Die Arbeiten an diesem Verbundprojekt haben im November 2012 begonnen.

Kontakt:
Prof. Dr. Gert Fricker
Institut für Pharmazie und Molekulare Biotechnologie (IPMB)
Telefon (06221) 54-8336
Gert.Fricker@uni-hd.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanogefäß mit einer Perle aus Gold
22.05.2015 | Gesellschaft Deutscher Chemiker e.V.

nachricht Was Chromosomen im Innersten zusammenhält
22.05.2015 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kieler Forschende bauen die kleinsten Maschinen der Welt

Die DFG stellt Millionenförderung für die Entwicklung neuartiger Medikamente und Materialien an der Christian-Albrechts-Universität zu Kiel (CAU) bereit.

Großer Jubel an der Christian-Albrechts-Universität zu Kiel (CAU): Wie die Deutsche Forschungsgemeinschaft (DFG) heute (Donnerstag, 21. Mai) bekannt gab,...

Im Focus: Basler Physiker entwickeln Methode zur effizienten Signalübertragung aus Nanobauteilen

Physiker haben eine innovative Methode entwickelt, die den effizienten Einsatz von Nanobauteilen in elektronische Schaltkreisen ermöglichen könnte. Sie entwickelten dazu eine Anordnung, bei der ein Nanobauteil mit zwei elektrischen Leitern verbunden ist. Diese bewirken eine hocheffiziente Auskopplung des elektrischen Signals. Die Wissenschaftler vom Departement Physik und dem Swiss Nanoscience Institute der Universität Basel haben ihre Ergebnisse zusammen mit Kollegen der ETH Zürich in der Fachzeitschrift «Nature Communications» publiziert.

Elektronische Bauteile werden immer kleiner. In Forschungslabors werden bereits Bauelemente von wenigen Nanometern hergestellt, was ungefähr der Grösse von...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: Phagen übertragen Antibiotikaresistenzen auf Bakterien – Nachweis auf Geflügelfleisch

Bakterien entwickeln immer häufiger Resistenzen gegenüber Antibiotika. Es gibt unterschiedliche Erklärungen dafür, wie diese Resistenzen in die Bakterien gelangen. Forschende der Vetmeduni Vienna fanden sogenannte Phagen auf Geflügelfleisch, die Antibiotikaresistenzen auf Bakterien übertragen können. Phagen sind Viren, die ausschließlich Bakterien infizieren können. Für Menschen sind sie unschädlich. Phagen könnten laut Studie jedoch zur Verbreitung von Antibiotikaresistenzen beitragen. Die Erkenntnisse sind nicht nur für die Lebensmittelproduktion sondern auch für die Medizin von Bedeutung. Die Studie wurde in der Fachzeitschrift Applied and Environmental Microbiology veröffentlicht.

Antibiotikaresistente Bakterien stellen weltweit ein bedeutendes Gesundheitsrisiko dar. Gängige Antibiotika sind bei der Behandlung von Infektionskrankheiten...

Im Focus: Die schreckliche Schönheit der Medusa

Astronomen haben mit dem Very Large Telescope der ESO in Chile das bisher detailgetreueste Bild vom Medusa-Nebel eingefangen, das je aufgenommen wurde. Als der Stern im Herzen dieses Nebels altersschwach wurde, hat er seine äußeren Schichten abgestoßen, aus denen sich diese farbenfrohe Wolke bildete. Das Bild lässt erahnen, welches endgültige Schicksal die Sonne einmal ereilen wird: Irgendwann wird aus ihr ebenfalls ein Objekt dieser Art werden.

Dieser wunderschöne Planetarische Nebel ist nach einer schrecklichen Kreatur aus der griechischen Mythologie benannt – der Gorgone Medusa. Er trägt auch die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

TU Darmstadt: Gipfel der Verschlüsselung - CROSSING-Konferenz am 1. und 2. Juni in Darmstadt

22.05.2015 | Veranstaltungen

Internationale neurowissenschaftliche Tagung

22.05.2015 | Veranstaltungen

Biokohle-Forscher tagen in Potsdam

21.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nanogefäß mit einer Perle aus Gold

22.05.2015 | Biowissenschaften Chemie

Ferngesteuerte Mikroschwimmer: Jülicher Physiker simulieren Bewegungen von Bakterien an Oberflächen

22.05.2015 | Physik Astronomie

Was Chromosomen im Innersten zusammenhält

22.05.2015 | Biowissenschaften Chemie