Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Puzzleteilchen für die Reparatur von gefährlichen Schäden in der DNA

27.05.2014

Die Reparatur von DNA-Schäden ist hochkomplex.

Für die Behebung eines äusserst gefährlichen Schadens haben UZH-Forschende ein weiteres Puzzleteilchen entdeckt. Um sogenannte Crosslinks fehlerfrei und effizient zu reparieren, bedarf es einer Zusammenarbeit zwischen einem spezifischen Signal- und Reparaturprotein. Da Crosslinks auslösende Substanzen gezielt zur Bekämpfung von Krebs eingesetzt werden, sind die neuen Erkenntnisse auch für die Entwicklung von besseren Medikamenten wichtig.


Einsatz von Crosslinks auslösenden Substanzen zur Bekämpfung von Krebs

Bilder:UZH

Umwelteinflüsse wie ionisierende Strahlung, grosse Hitze oder bestimmte chemische Substanzen beschädigen die DNA fortlaufend. Nur dank effizienter Reparatursysteme können Mutationen –Veränderungen in der DNA – weitgehend verhindert werden.

Zu den gefährlichsten aller DNA-Schäden zählen die sogenannten Crosslinks. Dabei handelt es sich um kovalente Quer-Vernetzungen beider Stränge der DNA-Doppelhelix. Crosslinks blockieren die Vervielfältigung der DNA und können dadurch zum Tod einer Zelle führen. Ausserdem kann ihre fehlerhafte Reparatur die Entstehung von Tumoren auslösen. Die Reparatur von Crosslinks ist hochkomplex und wird heute erst ansatzweise verstanden.

Krebsforscher unter der Leitung von Alessandro Sartori von der Universität Zürich decken jetzt interessante Details auf, wie Zellen Crosslink-Schäden erkennen. In ihrer kürzlich in «Cell Reports» veröffentlichten Studie weisen die Wissenschaftler nach, dass für die fehlerfreie Reparatur von Crosslink-Schäden das Zusammenspiel von zwei spezifischen Proteinen ausschlaggebend ist.

Reparaturprotein erkennt Crosslink-Schäden mit Hilfe eines Signalproteins

Für ihre Studie untersuchten die Forscher mit Hilfe von genetisch manipulierten und unveränderten Zellen den «Fanconi-Anemia-Signalweg», der die komplexe Reparatur von Crosslinks koordiniert. Sartori und Kollegen wollten wissen, ob und wie der Signalweg und das Reparaturprotein «CtlP» miteinander interagieren. «Wir können zeigen, dass CtlP Crosslinks mit Hilfe des Fanconi-Anemia-Signalwegs, genauer dem <FANCD2>-Protein, effizient erkennt und repariert», erläutert Sartori.

Die Wissenschaftler haben zudem entdeckt, an welcher Stelle sich «FANCD2» an das «CtlP»-Protein anlagert. Das Zusammenspiel der beiden Proteine ist gemäss den Forschern notwendig für die fehlerfreie und reibungslose Reparatur von Crosslink-Schäden. Es verhindert Chromosomenbrüche und Verlagerungen von ganzen Chromosomenabschnitten an eine andere Position (siehe Abbildung). Der als chromosomale Translokation bezeichnete Vorgang ist eine der Hauptursachen für die Entstehung von Krebs.

In der Krebs- bzw. Chemotherapie werden heute Substanzen eingesetzt, die bei den Krebszellen gezielt Crosslink-Schäden auslösen. Die neuen Erkenntnisse sind sowohl für das Verständnis für die Entstehung von Krebs als auch im Hinblick auf die weitere Entwicklung von verbesserten Medikamenten wichtig.

Literatur:
Olga Murina, Christine von Aesch, Ufuk Karakus, Lorenza P. Ferretti, Hella A. Bolck, Kay Hänggi, and Alessandro A. Sartori. FANCD2 and CtIP Cooperate to Repair DNA Interstrand Crosslinks. Cell Reports (2014). May 1, 2014. http://dx.doi.org/10.1016/j.celrep.2014.03.069

Weitere Informationen:

http://www.mediadesk.uzh.ch

Bettina Jakob | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften