Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Protokoll erlaubt Analyse von Stoffwechselprodukten aus fixiertem Gewebe

15.07.2016

Wissenschaftler am Helmholtz Zentrum München haben eine neue Methode für die bildgebende Massenspektrometrie entwickelt, mit der es erstmals möglich ist, in fixierten Gewebeproben hunderte von Metaboliten gleichzeitig zu analysieren. Ihre Publikation in ‚Nature Protocols‘ erklärt den neuen Zugang zu den Stoffwechselinformationen, der ein bislang nicht ausgeschöpftes Potenzial für gewebsbasierte Forschung und molekulare Diagnostik bietet.

In der biomedizinischen Forschung ist das Arbeiten mit Gewebeproben nicht mehr wegzudenken, denn sie erlauben abseits von Petrischale und Computersimulation einen Blick in die biologische Wirklichkeit, etwa von Patienten. Um das Gewebe für spätere Untersuchungen möglichst im Originalzustand aufzubewahren, wird es in der Regel in Formalin fixiert und in wachsartiges Paraffin eingebettet.


Ein neues Protokoll für die bildgebende Massenspektrometrie erlaubt die Analyse von Stoffwechselprodukten wie Adenosinmonophosphat aus fixiertem Gewebe, hier im Hintergrund dargestellt.

Quelle: Helmholtz Zentrum München

Bisher war man davon ausgegangen, dass in so behandeltem Material eine Analyse von Stoffwechselprodukten (Metaboliten) im Gegensatz zu DNA oder Proteinen aus technischen Gründen kaum möglich ist. Dies konnte ein Wissenschaftlerteam der Abteilung Analytische Pathologie des Helmholtz Zentrums München um Leiter Prof. Dr. Axel Karl Walch nun widerlegen.

Fixiertes Gewebe im großen Maßstab zugänglich

Die Forscherinnen und Forscher entwickelten ein Protokoll, wonach es binnen eines Tages möglich ist, die Metabolitkomposition eines Gewebes mit Hilfe der bildgebenden Massenspektrometrie zu bestimmen und in Gewebeschnitten sichtbar zu machen. Dazu reichen den Autoren zufolge relativ kleine Mengen an Material. „Unsere Methode erlaubt auch die Analyse von kleinsten Biopsien und sogar Gewebe-Microarrays, was sie für die molekulare Forschung und Diagnostik besonders interessant macht“, erklärt Doktorand Achim Buck, gemeinsam mit Alice Ly, Erstautor der Studie.

Um auszuschließen, dass die gemessenen Daten nicht durch den Fixationsprozess verfälscht werden, verglichen die Autoren sie mit Messwerten der gleichen Proben, die aber nicht fixiert, sondern schockgefroren waren. „Ein Großteil der gemessenen Metabolite fand sich in beiden Analysen wieder“, berichtet Achim Buck. „Wir konnten zeigen, dass die Methode verlässlich funktioniert und dabei die aufwändige Logistik und Lagerung von schockgefrorenen Proben umgeht.“

Neben der einfachen Handhabung und der hohen Reproduzierbarkeit ist den Wissenschaftlern zufolge auch die Möglichkeit, mit hohem Probendurchsatz zu arbeiten, ein wichtiger Vorteil der neuen Methode.* Vor allem aber könne man nun die räumliche Verteilung von Molekülen im Gewebe bildhaft und mit großer Präzision studieren. „Das ist sowohl in der Forschung als auch in der klinisch diagnostischen Praxis ein enormer Vorteil“, ordnet Studienleiter Walch die neuen Möglichkeiten ein. „Unser Ziel ist es nun, mit unserem neuen Analyseverfahren zukünftig neue prädiktive, diagnostische und prognostische Marker in Geweben zu identifizieren, sowie Krankheitsprozesse besser zu verstehen.“

Von der Veröffentlichung des Protokolls erhoffen sich die Wissenschaftler auch einen Austausch und eine Weiterentwicklung durch Kollegen, um metabolische Untersuchungen an Archivgeweben voranzutreiben.

Weitere Informationen

Hintergrund:
* Über Gewebe-Mikroarrays, die die Analyse von mehreren hundert Patienten in einer Messung erlauben, können im Hochdurchsatz gewebsbasierte wissenschaftliche und diagnostische Fragestellungen zum Verständnis der Krankheitsentstehung und neuer Therapieoptionen geklärt werden.

Original-Publikation:
Ly, A. & Buck, A. et al. (2016). High Mass Resolution MALDI Mass Spectrometry Imaging of Metabolites from Formalin-Fixed Paraffin Embedded Tissue, Nature Protocols, DOI: nprot.2016.081

Unterstützende Publikation:
Buck, A. & Ly, A. et al. (2015). High-resolution MALDI-FT-ICR MS Imaging for the analysis of metabolites from formalin-fixed paraffin-embedded clinical tissue samples, The Journal of Pathology, doi:10.1002/path.4560

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Die selbstständige Abteilung Analytische Pathologie (AAP) entwickelt wissenschaftlich in Ergänzung zu klinischen und grundlagenorientierten Forschungseinheiten die translationale Forschung von Erkrankungen, die sich in Geweben manifestieren. AAP beschäftigt sich mit der Übersetzung von z.B. In-vitro-Modellen oder Tiermodellen in die Anwendung am Menschen. So verzahnt AAP gemeinsam mit dem Institut für Pathologie (PATH) die grundlagenorientierte Forschung und die diagnostische Anwendung und übersetzt die Erkenntnisse der experimentellen und molekularen Pathologie in Verfahren der Krankheitstypisierung und prädiktiven Diagnostik am Gewebe. http://www.helmholtz-muenchen.de/aap

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner:
Prof. Dr. Axel Karl Walch, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung Analytische Pathologie, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2739, E-Mail: axel.walch@helmholtz-muenchen.de

Weitere Informationen:

http://www.nature.com/nprot/journal/v11/n8/full/nprot.2016.081.html

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Treibjagd in der Petrischale
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Dinner in the Dark – ein delikates Wechselspiel der Mikroorganismen
24.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie