Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Programm für neurale Stammzellen

04.05.2011
Max-Planck-Forscher gewinnen Gehirn- und Rückenmarkszellen aus Stammzellen des peripheren Nervensystems

Neurale Stammzellen können vieles, aber nicht alles. So entstehen aus neuralen Stammzellen des peripheren Nervensystems normalerweise keine Zellen für Gehirn und Rückenmark, und aus Stammzellen des zentralen Nervensystems lassen sich keine Zellen für das periphere System züchten.

Forschern des Max-Planck-Instituts für Hirnforschung in Frankfurt und für Immunbiologie und Epigenetik in Freiburg ist dies jedoch nun gelungen. Sie haben aus neuralen Stammzellen des peripheren Nervensystems Zellen des zentralen Nervensystems gezüchtet. Werden die peripheren Stammzellen unter bestimmten Wachstumsbedingungen gehalten, entstehen daraus so genannte Oligodendrozyten, die im Gehirn die so genannte Myelinschicht um Nervenzellen ausbilden.

Das Nervensystem der Säugetiere besteht aus dem zentralen (Gehirn, Rückenmark) und dem peripheren Nervensystem (z.B. sensorische Ganglien). Die beiden Systeme sind zwar eng miteinander gekoppelt, unterscheiden sich jedoch anatomisch und bestehen aus verschiedenartigen Zellen. Die Zelltypen des peripheren Nervensystems stammen von Vorläuferzellen aus der Neuralleiste im Embryo ab. Bislang war man der Ansicht, dass diese Neuralleisten-Stammzellen zwar die Nerven- und Stützzellen – die so genannten Gliazellen – des peripheren Nervensystems hervorbringen können, nicht jedoch Zellen des zentralen Nervensystems.

Offenbar bestimmen die Umgebungsbedingungen, in welche Zelltypen sich die Neuralleisten-Stammzellen entwickeln. Die Freiburger und Frankfurter Wissenschaftler haben zusammen mit Kollegen aus Paris gezeigt, dass diese Stammzellen unter veränderten Bedingungen auch Zellen des zentralen Nervensystems hervorbringen können. Dazu setzten sie Stammzellen aus dem peripheren Nervensystem embryonaler und weniger Tage alter Mäuse unterschiedlichen Kulturbedingungen aus. Aus den Neuralleisten-Stammzellen wurden neben Nervenzellen auch verschiedene Typen von Gliazellen des zentralen Nervensystems wie Oligodendrozyten und Astrozyten. „Das Kulturmedium programmiert also die Neuralleisten-Stammzellen so um, dass sie ihre Identität verändern. Dies funktioniert, auch ohne dass wir die Zellen genetisch verändern“, erklärt Hermann Rohrer vom Max-Planck-Institut für Hirnforschung.

Faktoren in dem Kulturmedium aktivieren offenbar ein anderes genetisches Programm, so dass aus den Stammzellen andere Zelltypen entstehen. Welche Faktoren das sind, wissen die Forscher noch nicht genau. Es deutet jedoch einiges darauf hin, dass der Wachstumsfaktor FGF (fibroblast growth factor) an der Umwandlung beteiligt ist.

Im Gehirn von Mäusen in unterschiedlichen Entwicklungsstadien entwickelten sich die umprogrammierten Stammzellen vor allem zu Oligodendrozyten weiter - Gliazellen, die die Myelinschicht um die Neurone des zentralen Nervensystems bilden und deshalb für die Reizweiterleitung unverzichtbar sind. Transplantationsexperimente der Forscher an genetisch veränderten Mäusen ohne Myelin belegen, dass auch die neuen Oligodendrozyten diese Aufgabe übernehmen. „Die umprogrammierten Stammzellen können dauerhaft Zellen für das zentrale Nervensystem bilden, und die neuen Zellen können dort integriert werden“, sagt Verdon Taylor vom Max-Planck-Institut für Immunbiologie und Epigenetik.

Ob diese Ergebnisse aus der Grundlagenforschung zur Entwicklung einer Zelltherapie beim Menschen beitragen können, ist noch unklar. Denn dazu müssten Stammzellen im peripheren Nervensystem erwachsener Menschen vorhanden und zugänglich sein sowie in Kultur vermehrt und umprogrammiert werden können. „Zum jetzigen Zeitpunkt wissen wir aber nur, dass diese Stammzellen bei Mäusen das Potenzial haben, auch Oligodendrozyten hervorzubringen“, sagt Hermann Rohrer. Als nächstes wollen die Wissenschaftler genauer untersuchen, welche molekularen Mechanismen für die Umprogrammierung verantwortlich sind, ob Neuralleisten-Stammzellen auch im peripheren Nervensystem ausgewachsener Mäuse vorhanden sind und unter welchen Bedingungen diese umprogrammiert werden können.

Ansprechpartner
Prof. Hermann Rohrer
Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Telefon: +49 69 96769-319
E-Mail: rohrer@mpih-frankfurt.mpg.de
Dr. Verdon Taylor
Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg
Telefon: +49 761 5108487
E-Mail: taylor@immunbio.mpg.de
Originalveröffentlichung
Ellen Binder, Marion Rukavina, Hessameh Hassani, Marlen Weber, Hiroko Nakatani, Tobias Reiff, Carlos Parras, Verdon Taylor, and Hermann Rohrer
Peripheral nervous nystem progenitors can be reprogrammed to produce myelinating oligodendrocytes and repair brain lesions

Journal of Neuroscience, 27. April 2011, DOI:10.1523/JNEUROSCI.0129-11.2011

Prof. Hermann Rohrer | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung

26.07.2017 | Biowissenschaften Chemie

Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa

26.07.2017 | Biowissenschaften Chemie

Biomarker zeigen Aggressivität des Tumors an

26.07.2017 | Biowissenschaften Chemie