Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Nanoskopie-Verfahren gibt Einblick in kleinste Zellstrukturen

18.08.2014

Göttinger Wissenschaftler entwickeln neues Verfahren, um Zellen mit hochauflösender Bildgebung zu untersuchen.

Originalveröffentlichung: Saka SK, Vogts A, Kröhnert K, Hillion F, Rizzoli SO*, Wessels J* (2014) Correlated optical and isotopic nanoscopy. NATURE COMMUNICATIONS, 5: 3664.

Molekulare Prozesse in lebenden Zellen lassen sich am besten mithilfe hochauflösender Mikroskopie-Techniken beobachten. Trotz moderner technischer Neuerungen in der Mikroskopie gibt es nach wie vor Grenzen, die das Vordringen in molekulare Bereiche verhindern.


v.l.n.r.: Dr. Johannes Wessels, Dr. Sinem K. Saka, Katharina Kröhnert, Prof. Dr. Silvio O. Rizzoli.

Foto: Prof. Rizzoli / CNMPB

Prof. Dr. Silvio O. Rizzoli und sein Team vom Exzellenzcluster und DFG-Forschungszentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der Universitätsmedizin Göttingen (UMG) haben jetzt durch die Kombination zweier bildgebender Techniken ein neues Verfahren entwickelt, welche die Anwendbarkeit hochauflösender Mikroskopie für biologische Präparate und Fragestellungen erweitert.

Mit dem neuen Bildgebungsverfahren „COIN“ können die Wissenschaftler genau untersuchen, wie sich Proteine in zellulären Strukturen erneuern und wie ihr Stoffwechsel funktioniert. Veröffentlicht wurde diese neue Technik in der Fachzeitschrift Nature Communications.

Wie erneuern sich Elemente einer Zelle? Diese Frage ist trotz ihrer großen Bedeutung noch immer ein unverstandener Aspekt in der modernen Zellbiologie. Bisher wurde dieser Prozess untersucht, indem Zellen beispielsweise mit radioaktiven Aminosäuren „gefüttert“ wurden.

Mit der Zeit werden die Aminosäuren durch Stoffwechselprozesse in zelluläre Proteine eingebaut, die dann durch eine spezielle Technik, die Sekundäre-Ionen-Massen- Spektrometrie (SIMS), abgebildet werden können. So können die verschiedenen Bestandteile einer Zelle, die so genannten Organellen, und Gewebe dargestellt werden. Aufgrund der Auflösungsgrenze der SIMS sind sie jedoch nicht eindeutig zu erkennen.

An dieser Stelle hat das Team um Prof. Rizzoli in Zusammenarbeit mit Wissenschaftlern des Leibniz-Instituts für Ostseeforschung in Warnemünde und der französischen Firma Cameca angesetzt und das SIMS-Verfahren um eine zweite Technik ergänzt. Das kombinierte Verfahren basiert auf der hochauflösenden Stimulated Emission Depletion (STED)-Mikroskopie. Den neuen Ansatz aus beiden Techniken bezeichnen die Wissenschaftler daher als „korrelierte optische und isotopische Nanoskopie“ (correlated optical and isotopic nanoscopy = COIN).

Jede der beiden Techniken liefert Informationen, die mit der anderen Technik allein nicht zu erhalten sind. Die SIMS-Technik entschlüsselt die Zusammenstellung der Isotope des zu untersuchenden Materials und seine Halbwertzeit. Die STED-Mikroskopie hingegen gibt Aufschluss über die Identitäten und die räumliche Verteilung der Organellen.

In der Kombination der beiden Techniken (COIN) ist es nun erstmals möglich, die Halbwertzeit und die Erneuerung von Proteinen in verschiedenen einzelnen Organellen genau zu ermitteln. Die COIN-Technik kann bei vielen biologischen Proben eingesetzt werden. Damit kann die hochauflösende Mikroskopie für mehr zellbiologische Fragestellungen verwendet werden.

Das bedeutet: Mithilfe von COIN sollte nahezu jede Organelle oder subzelluläre Struktur zu untersuchen sein. Den Wissenschaftlern ist es bereits gelungen, Informationen zur Halbwertzeit und Erneuerung verschiedener Organellen in kultivierten Neuronen des Hippocampus im Großhirn zu erhalten.

Prof. Dr. Silvio O. Rizzoli leitet das Institut für Neuro- und Sinnesphysiologie an der Universitätsmedizin Göttingen und ist Mitglied des Göttinger Exzellenzclusters und DFG- Forschungszentrums für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB).

Seine Forschungsschwerpunkte sind die molekularen Prozesse der Signalübertragung zwischen Nervenzellen. Prof. Rizzoli benutzt hochauflösende Lichtmikroskopie, um Transport und Funktion von intrazellulären „Bläschen“, so genannten Vesikeln, in den Synapsen der Nervenzellen zu verstehen. Für seine Forschungsvorhaben wurde Prof. Rizzoli bereits zum zweiten Mal mit einem hochdotierten Förderpreis der Europäischen Union ausgezeichnet.

WEITERE INFORMATIONEN
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Neuro- und Sinnesphysiologie
European Neuroscience Institute (ENI) Göttingen Grisebachstraße 5, 37077 Göttingen
Prof. Dr. Silvio Rizzoli, Telefon 0551 / 39-33630, srizzol@gwdg.de

CNMPB – Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns Exzellenzcluster 171 – DFG-Forschungszentrum 103
Humboldtallee 23, 37073 Göttingen
Wissenschaftliche Koordination, Presse & Öffentlichkeitsarbeit
Dr. Heike Conrad, Telefon 0551 / 39-7065, heike.conrad@med.uni-goettingen.de, www.cnmpb.de

Leibniz-Institut für Ostseeforschung Warnemünde
Sektion Biologische Meereskunde
Dr. Angela Vogts, Telefon 0381 / 5197 353, angela.vogts@io-warnemuende.de

Weitere Informationen:

http://rizzoli-lab.de - Arbeitsgruppe Prof. S. O. Rizzoli
http://www.cnmpb.de - Exzellenzcluster und DFG-Forschungszentrum Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB)
http://www.io-warnemuende.de - Leibniz-Institut für Ostseeforschung Warnemünde

Dr. Heike Conrad | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics