Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Lernschema für neuronale Netzwerke

04.03.2016

Nervennetze lernen zeitlich getrennte Reize miteinander zu verknüpfen

Blätterrascheln, das Knacken eines Astes – für eine Maus sind dies zunächst harmlose Sinneseindrücke. Nicht aber, wenn kurz darauf eine Katze aus dem Gebüsch stürzt – dann waren es Hinweise auf eine lebensbedrohliche Gefahr.


Neuronennetzwerk mit unterschiedlichen Sinnesreizen (farbige Kästen), die sich in der Eingangsaktivität widerspiegeln (Punkte-Raster).

MPI für experimentelle Medizin/R. Gütig

Robert Gütig vom Max-Planck Institut für experimentelle Medizin in Göttingen hat nun herausgefunden, wie das Gehirn Sinneswahrnehmungen mit verzögert auftretenden Ereignissen verknüpfen kann. Dazu hat der Forscher ein Lernschema für ein Computermodell entwickelt.

Die virtuellen Zellen können darin lernen, zwischen vielen unterschiedlichen Reizen zu unterscheiden, indem sie ihre Aktivität an die Häufigkeit der Hinweisreize anpassen. Das funktioniert auch dann, wenn zwischen Hinweisreiz und Ereignis eine zeitliche Lücke besteht.

Das von Gütig entdeckte Lernschema ist nicht nur für jedes Lebewesen überlebenswichtig, um Reize aus der Umwelt herauszufiltern, es hilft auch bei einer Vielzahl technologischer Lernprobleme. Forscher könnten es zum Beispiel zur Entwicklung von Programmen zur Spracherkennung einsetzen.

In der Tierwelt künden sich Gefahren oft vorher an: verräterische Geräusche, Bewegungen oder ein Geruch können Hinweise auf einen bevorstehenden Angriff eines Räubers sein. Überlebt etwa eine Maus den Angriff einer Katze, hat sie es in Zukunft leichter, wenn sie aus dem missglückten Angriff lernt und die Hinweise beim nächsten Mal frühzeitig deuten kann.

Es prasseln jedoch ständig eine Vielzahl sensorischer Eindrücke auf sie ein, von denen die meisten nicht auf eine Gefahr hindeuten. Woher weiß die Maus also, welche Geräusche und Gerüche aus der Umwelt etwa den Angriff einer Katze ankündigen und welche nicht?

Das Mausgehirn steht dabei vor einem Problem: Die entscheidenden Umgebungsreize sind meist zeitlich vom eigentlichen Angriff isoliert. Das Gehirn muss also einen Hinweis und das darauffolgende Ereignis – etwa einem Geräusch und einem Angriff – miteinander verknüpfen, die zeitlich auseinander liegen. Bisherige Theorien konnten nicht befriedigend erklären, wie das Gehirn die Zeit zwischen einem Hinweisreiz und dem eigentlichen Erlebnis überbrückt.

Robert Gütig vom Max-Planck-Institut für experimentelle Medizin hat entdeckt, wie das Gehirn dieses Problem lösen kann. Er hat am Computer ein Netzwerk aus Nervenzellen programmiert, das wie ein biologischer Zellverband auf Erregungen reagiert. Das Netzwerk kann lernen, diejenigen Hinweisreize herauszufiltern, die ein späteres Ereignis vorhersagen.

Auf die Häufigkeit kommt es an

Das Netzwerk lernt, indem es gezielt Synapsen zwischen den virtuellen Nervenzellen verstärkt oder abschwächt. Grundlage des Computermodells ist eine synaptische Lernregel, mit der einzelne Nervenzellen ihre Aktivität in Abhängigkeit von einem einfachen Lernsignal erhöhen oder absenken können. Mit dieser Lernregel setzt Gütig ein neues Lernschema um:

„Dieses häufigkeitsbasierte Lernschema beruht auf der Idee, die Verbindungen zwischen Zellen so einzustellen, dass die resultierende neuronale Aktivität über einen Zeitraum gesehen proportional zur Häufigkeit der Hinweisreize wird“, erklärt Gütig. Spiegelt also ein Lernsignal das Auftreten und die Stärke bestimmter Ereignisse im Umfeld der Maus wieder, so lernen die Nervenzellen auf jene Reize zu reagieren, die diese Ereignisse vorhersagen.

Gütigs Netzwerke können aber auch dann lernen, auf Umgebungsreize zu reagieren, wenn keine Lernsignale aus der Umgebung vorhanden sind. Hierzu wird die mittlere neuronale Aktivität innerhalb eines Netzwerkes als Lernsignal interpretiert. Einzelne Nervenzellen lernen nun auf solche Reize zu reagieren, die genauso häufig aufgetreten sind wie die, auf welche die anderen Nervenzellen im Netzwerk reagieren. Dieses „selbst überwachte“ Lernen folgt einem anderen Prinzip, als etwa die Hebbsche Lernregel, die bislang häufig in künstlichen neuronalen Netzen zum Einsatz kam. Solche Hebbschen Netze lernen, indem sie die Synapsen zwischen den Zellen verstärken, die gleichzeitig oder kurz nacheinander aktiv sind. „Beim selbst überwachten Lernen muss die Aktivität der Zellen nicht zeitlich synchronisiert sein. Maßgeblich für die Änderung von Synapsen ist nur die Gesamtaktivität in einem bestimmten Zeitraum“, sagt Gütig. Somit können diese Netzwerke auch Sinnesreize verschiedener sensorischer Modalitäten, z.B. Sehen, Hören und Riechen, verknüpfen, deren neuronale Repräsentationen zeitlich erheblich gegeneinander verschoben sein können.

Gütigs Lernschema erklärt nicht nur biologische Prozesse, sondern könnte auch weitreichenden Verbesserungen innerhalb technologischer Anwendungen, z.B. der künstlichen Spracherkennung, den Weg bereiten. „Es wäre damit möglich, die Anforderungen für das Training computergestützter Spracherkennung erheblich zu vereinfachen. Anstatt aufwendig segmentierter Sprachdatenbanken oder komplexer Segmentierungsalgorithmen genügen für häufigkeitsbasiertes Lernen beispielsweise die Untertitel von Nachrichtensendungen“, so Gütig.

Originalpublikation:
Robert Gütig
Spiking neurons can discover predictive features by aggregate-label learning
Science 4 March 2016; DOI: 10.1126/science.aab4113

Ansprechpartner:
Dr. Robert Gütig
Max-Planck-Institut für experimentelle Medizin, Göttingen
Telefon:+49 551 3899-490
E-Mail:
guetig@em.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie