Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Lernschema für neuronale Netzwerke

04.03.2016

Nervennetze lernen zeitlich getrennte Reize miteinander zu verknüpfen

Blätterrascheln, das Knacken eines Astes – für eine Maus sind dies zunächst harmlose Sinneseindrücke. Nicht aber, wenn kurz darauf eine Katze aus dem Gebüsch stürzt – dann waren es Hinweise auf eine lebensbedrohliche Gefahr.


Neuronennetzwerk mit unterschiedlichen Sinnesreizen (farbige Kästen), die sich in der Eingangsaktivität widerspiegeln (Punkte-Raster).

MPI für experimentelle Medizin/R. Gütig

Robert Gütig vom Max-Planck Institut für experimentelle Medizin in Göttingen hat nun herausgefunden, wie das Gehirn Sinneswahrnehmungen mit verzögert auftretenden Ereignissen verknüpfen kann. Dazu hat der Forscher ein Lernschema für ein Computermodell entwickelt.

Die virtuellen Zellen können darin lernen, zwischen vielen unterschiedlichen Reizen zu unterscheiden, indem sie ihre Aktivität an die Häufigkeit der Hinweisreize anpassen. Das funktioniert auch dann, wenn zwischen Hinweisreiz und Ereignis eine zeitliche Lücke besteht.

Das von Gütig entdeckte Lernschema ist nicht nur für jedes Lebewesen überlebenswichtig, um Reize aus der Umwelt herauszufiltern, es hilft auch bei einer Vielzahl technologischer Lernprobleme. Forscher könnten es zum Beispiel zur Entwicklung von Programmen zur Spracherkennung einsetzen.

In der Tierwelt künden sich Gefahren oft vorher an: verräterische Geräusche, Bewegungen oder ein Geruch können Hinweise auf einen bevorstehenden Angriff eines Räubers sein. Überlebt etwa eine Maus den Angriff einer Katze, hat sie es in Zukunft leichter, wenn sie aus dem missglückten Angriff lernt und die Hinweise beim nächsten Mal frühzeitig deuten kann.

Es prasseln jedoch ständig eine Vielzahl sensorischer Eindrücke auf sie ein, von denen die meisten nicht auf eine Gefahr hindeuten. Woher weiß die Maus also, welche Geräusche und Gerüche aus der Umwelt etwa den Angriff einer Katze ankündigen und welche nicht?

Das Mausgehirn steht dabei vor einem Problem: Die entscheidenden Umgebungsreize sind meist zeitlich vom eigentlichen Angriff isoliert. Das Gehirn muss also einen Hinweis und das darauffolgende Ereignis – etwa einem Geräusch und einem Angriff – miteinander verknüpfen, die zeitlich auseinander liegen. Bisherige Theorien konnten nicht befriedigend erklären, wie das Gehirn die Zeit zwischen einem Hinweisreiz und dem eigentlichen Erlebnis überbrückt.

Robert Gütig vom Max-Planck-Institut für experimentelle Medizin hat entdeckt, wie das Gehirn dieses Problem lösen kann. Er hat am Computer ein Netzwerk aus Nervenzellen programmiert, das wie ein biologischer Zellverband auf Erregungen reagiert. Das Netzwerk kann lernen, diejenigen Hinweisreize herauszufiltern, die ein späteres Ereignis vorhersagen.

Auf die Häufigkeit kommt es an

Das Netzwerk lernt, indem es gezielt Synapsen zwischen den virtuellen Nervenzellen verstärkt oder abschwächt. Grundlage des Computermodells ist eine synaptische Lernregel, mit der einzelne Nervenzellen ihre Aktivität in Abhängigkeit von einem einfachen Lernsignal erhöhen oder absenken können. Mit dieser Lernregel setzt Gütig ein neues Lernschema um:

„Dieses häufigkeitsbasierte Lernschema beruht auf der Idee, die Verbindungen zwischen Zellen so einzustellen, dass die resultierende neuronale Aktivität über einen Zeitraum gesehen proportional zur Häufigkeit der Hinweisreize wird“, erklärt Gütig. Spiegelt also ein Lernsignal das Auftreten und die Stärke bestimmter Ereignisse im Umfeld der Maus wieder, so lernen die Nervenzellen auf jene Reize zu reagieren, die diese Ereignisse vorhersagen.

Gütigs Netzwerke können aber auch dann lernen, auf Umgebungsreize zu reagieren, wenn keine Lernsignale aus der Umgebung vorhanden sind. Hierzu wird die mittlere neuronale Aktivität innerhalb eines Netzwerkes als Lernsignal interpretiert. Einzelne Nervenzellen lernen nun auf solche Reize zu reagieren, die genauso häufig aufgetreten sind wie die, auf welche die anderen Nervenzellen im Netzwerk reagieren. Dieses „selbst überwachte“ Lernen folgt einem anderen Prinzip, als etwa die Hebbsche Lernregel, die bislang häufig in künstlichen neuronalen Netzen zum Einsatz kam. Solche Hebbschen Netze lernen, indem sie die Synapsen zwischen den Zellen verstärken, die gleichzeitig oder kurz nacheinander aktiv sind. „Beim selbst überwachten Lernen muss die Aktivität der Zellen nicht zeitlich synchronisiert sein. Maßgeblich für die Änderung von Synapsen ist nur die Gesamtaktivität in einem bestimmten Zeitraum“, sagt Gütig. Somit können diese Netzwerke auch Sinnesreize verschiedener sensorischer Modalitäten, z.B. Sehen, Hören und Riechen, verknüpfen, deren neuronale Repräsentationen zeitlich erheblich gegeneinander verschoben sein können.

Gütigs Lernschema erklärt nicht nur biologische Prozesse, sondern könnte auch weitreichenden Verbesserungen innerhalb technologischer Anwendungen, z.B. der künstlichen Spracherkennung, den Weg bereiten. „Es wäre damit möglich, die Anforderungen für das Training computergestützter Spracherkennung erheblich zu vereinfachen. Anstatt aufwendig segmentierter Sprachdatenbanken oder komplexer Segmentierungsalgorithmen genügen für häufigkeitsbasiertes Lernen beispielsweise die Untertitel von Nachrichtensendungen“, so Gütig.

Originalpublikation:
Robert Gütig
Spiking neurons can discover predictive features by aggregate-label learning
Science 4 March 2016; DOI: 10.1126/science.aab4113

Ansprechpartner:
Dr. Robert Gütig
Max-Planck-Institut für experimentelle Medizin, Göttingen
Telefon:+49 551 3899-490
E-Mail:
guetig@em.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie