Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Lernschema für neuronale Netzwerke

04.03.2016

Nervennetze lernen zeitlich getrennte Reize miteinander zu verknüpfen

Blätterrascheln, das Knacken eines Astes – für eine Maus sind dies zunächst harmlose Sinneseindrücke. Nicht aber, wenn kurz darauf eine Katze aus dem Gebüsch stürzt – dann waren es Hinweise auf eine lebensbedrohliche Gefahr.


Neuronennetzwerk mit unterschiedlichen Sinnesreizen (farbige Kästen), die sich in der Eingangsaktivität widerspiegeln (Punkte-Raster).

MPI für experimentelle Medizin/R. Gütig

Robert Gütig vom Max-Planck Institut für experimentelle Medizin in Göttingen hat nun herausgefunden, wie das Gehirn Sinneswahrnehmungen mit verzögert auftretenden Ereignissen verknüpfen kann. Dazu hat der Forscher ein Lernschema für ein Computermodell entwickelt.

Die virtuellen Zellen können darin lernen, zwischen vielen unterschiedlichen Reizen zu unterscheiden, indem sie ihre Aktivität an die Häufigkeit der Hinweisreize anpassen. Das funktioniert auch dann, wenn zwischen Hinweisreiz und Ereignis eine zeitliche Lücke besteht.

Das von Gütig entdeckte Lernschema ist nicht nur für jedes Lebewesen überlebenswichtig, um Reize aus der Umwelt herauszufiltern, es hilft auch bei einer Vielzahl technologischer Lernprobleme. Forscher könnten es zum Beispiel zur Entwicklung von Programmen zur Spracherkennung einsetzen.

In der Tierwelt künden sich Gefahren oft vorher an: verräterische Geräusche, Bewegungen oder ein Geruch können Hinweise auf einen bevorstehenden Angriff eines Räubers sein. Überlebt etwa eine Maus den Angriff einer Katze, hat sie es in Zukunft leichter, wenn sie aus dem missglückten Angriff lernt und die Hinweise beim nächsten Mal frühzeitig deuten kann.

Es prasseln jedoch ständig eine Vielzahl sensorischer Eindrücke auf sie ein, von denen die meisten nicht auf eine Gefahr hindeuten. Woher weiß die Maus also, welche Geräusche und Gerüche aus der Umwelt etwa den Angriff einer Katze ankündigen und welche nicht?

Das Mausgehirn steht dabei vor einem Problem: Die entscheidenden Umgebungsreize sind meist zeitlich vom eigentlichen Angriff isoliert. Das Gehirn muss also einen Hinweis und das darauffolgende Ereignis – etwa einem Geräusch und einem Angriff – miteinander verknüpfen, die zeitlich auseinander liegen. Bisherige Theorien konnten nicht befriedigend erklären, wie das Gehirn die Zeit zwischen einem Hinweisreiz und dem eigentlichen Erlebnis überbrückt.

Robert Gütig vom Max-Planck-Institut für experimentelle Medizin hat entdeckt, wie das Gehirn dieses Problem lösen kann. Er hat am Computer ein Netzwerk aus Nervenzellen programmiert, das wie ein biologischer Zellverband auf Erregungen reagiert. Das Netzwerk kann lernen, diejenigen Hinweisreize herauszufiltern, die ein späteres Ereignis vorhersagen.

Auf die Häufigkeit kommt es an

Das Netzwerk lernt, indem es gezielt Synapsen zwischen den virtuellen Nervenzellen verstärkt oder abschwächt. Grundlage des Computermodells ist eine synaptische Lernregel, mit der einzelne Nervenzellen ihre Aktivität in Abhängigkeit von einem einfachen Lernsignal erhöhen oder absenken können. Mit dieser Lernregel setzt Gütig ein neues Lernschema um:

„Dieses häufigkeitsbasierte Lernschema beruht auf der Idee, die Verbindungen zwischen Zellen so einzustellen, dass die resultierende neuronale Aktivität über einen Zeitraum gesehen proportional zur Häufigkeit der Hinweisreize wird“, erklärt Gütig. Spiegelt also ein Lernsignal das Auftreten und die Stärke bestimmter Ereignisse im Umfeld der Maus wieder, so lernen die Nervenzellen auf jene Reize zu reagieren, die diese Ereignisse vorhersagen.

Gütigs Netzwerke können aber auch dann lernen, auf Umgebungsreize zu reagieren, wenn keine Lernsignale aus der Umgebung vorhanden sind. Hierzu wird die mittlere neuronale Aktivität innerhalb eines Netzwerkes als Lernsignal interpretiert. Einzelne Nervenzellen lernen nun auf solche Reize zu reagieren, die genauso häufig aufgetreten sind wie die, auf welche die anderen Nervenzellen im Netzwerk reagieren. Dieses „selbst überwachte“ Lernen folgt einem anderen Prinzip, als etwa die Hebbsche Lernregel, die bislang häufig in künstlichen neuronalen Netzen zum Einsatz kam. Solche Hebbschen Netze lernen, indem sie die Synapsen zwischen den Zellen verstärken, die gleichzeitig oder kurz nacheinander aktiv sind. „Beim selbst überwachten Lernen muss die Aktivität der Zellen nicht zeitlich synchronisiert sein. Maßgeblich für die Änderung von Synapsen ist nur die Gesamtaktivität in einem bestimmten Zeitraum“, sagt Gütig. Somit können diese Netzwerke auch Sinnesreize verschiedener sensorischer Modalitäten, z.B. Sehen, Hören und Riechen, verknüpfen, deren neuronale Repräsentationen zeitlich erheblich gegeneinander verschoben sein können.

Gütigs Lernschema erklärt nicht nur biologische Prozesse, sondern könnte auch weitreichenden Verbesserungen innerhalb technologischer Anwendungen, z.B. der künstlichen Spracherkennung, den Weg bereiten. „Es wäre damit möglich, die Anforderungen für das Training computergestützter Spracherkennung erheblich zu vereinfachen. Anstatt aufwendig segmentierter Sprachdatenbanken oder komplexer Segmentierungsalgorithmen genügen für häufigkeitsbasiertes Lernen beispielsweise die Untertitel von Nachrichtensendungen“, so Gütig.

Originalpublikation:
Robert Gütig
Spiking neurons can discover predictive features by aggregate-label learning
Science 4 March 2016; DOI: 10.1126/science.aab4113

Ansprechpartner:
Dr. Robert Gütig
Max-Planck-Institut für experimentelle Medizin, Göttingen
Telefon:+49 551 3899-490
E-Mail:
guetig@em.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Maßstäbe für eine bessere Wasserqualität in Europa
27.02.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht Neurobiologie - Vorausschauend teilen
27.02.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Poseidon goes Politics – Wer oder was regiert die Ozeane?

27.02.2017 | Veranstaltungen

Fachtagung Rapid Prototyping 2017 – Innovationen in Entwicklung und Produktion

27.02.2017 | Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Untersuchung: Kontrastmittel sparen mit dem Mini-Teilchenbeschleuniger

27.02.2017 | Medizintechnik

Neue Maßstäbe für eine bessere Wasserqualität in Europa

27.02.2017 | Biowissenschaften Chemie

Wenn der Schmerz keine Worte findet - Künstliche Intelligenz zur automatisierten Schmerzerkennung

27.02.2017 | Medizintechnik