Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues vom Kleinhirn: Wissenschaftler der Saar-Uni weisen erstmals Funktion von Zellen nach

06.07.2012
Lange ging die Wissenschaft davon aus, dass im Gehirn nur die Nervenzellen an der Informationsübertragung beteiligt sind.

Andere Zellen, die Gliazellen, sah man lediglich als Stützzellen an. Erstmals konnten Wissenschaftler um Professor Frank Kirchhoff und Aiman Saab von der Saar-Uni jetzt zeigen, dass die sogenannten Bergmann Gliazellen sehr wohl an physiologischen Verarbeitungsprozessen des Kleinhirns beteiligt sind.

Unter Leitung der Homburger Forscher identifizierte ein Spezialistenteam die einzelnen Reaktionsschritte von ausgewählten Genen bis zum Verhaltensmuster laufender Mäuse. Die Ergebnisse ihrer Studie werden nun im renommierten Fachjournal Science veröffentlicht.

Nerven leiten Informationen weiter: In Bruchteilen von Sekunden steuert das Gehirn beispielsweise die Hand, damit diese nach einem Glas greifen kann. Die dazugehörige Informationsübertragung ist ein komplexes Wechselspiel von Botenstoffen, den Neurotransmittern, und ihrer Rezeptoren. „Diese Moleküle sorgen dafür, dass die Informationen an den Synapsen von einer Nervenzelle zur nächsten weitergeleitet werden. Dazu werden sie von einer Zelle ausgeschüttet, um an die Rezeptoren der benachbarten Nervenzelle anzudocken. Lange dachte die Forschung, dass diese Transmitterrezeptoren nur bei Nervenzellen zu finden sind“, erklärt Frank Kirchhoff, Professor für Molekulare Physiologie am Universitätsklinikum in Homburg. Vor einigen Jahren haben Wissenschaftler diese speziellen Rezeptoren allerdings auch bei anderen Zellen entdeckt. „Auf der Zelloberfläche der sogenannten Bergmann Gliazellen im Kleinhirn hat man solche Proteine, die AMPA-Rezeptoren, gefunden“, weiß Kirchhoff. Der Professor spekulierte, dass diese Zellen nicht nur eine Stützfunktion haben, sondern dass ihnen auch andere Aufgaben zukommen, die den lebenden Organismus beeinflussen.

Die Aufklärung der Funktion von Transmitterrezeptoren in Gliazellen vom Gen bis hin zum Verhalten beschäftigt den Homburger Forscher seit mehr als einem Jahrzehnt. Was passiert in einem Tier, wenn die Rezeptoren „ausgeschaltet“ sind? Zur Beantwortung dieser Frage musste man zunächst die Gene des Rezeptors aus dem Erbgut der Zellen entfernen. So sind die Zellen nicht mehr in der Lage, den Rezeptor auf der Zelloberfläche zu bilden. Der AMPA-Rezeptor der Gliazellen besteht aus zwei Bausteinen, deren Gene die Forscher der Saar-Uni in einem aufwendigen Verfahren aus der DNA entfernt haben. „Wir haben dafür mit gentechnisch veränderten Mäusen gearbeitet und untersucht, wie sie sich nach dem Abschalten des Rezeptors verhalten“, erklärt Aiman Saab, wissenschaftlicher Mitarbeiter bei Kirchhoff. In einem komplexen Verhaltenstest haben die Wissenschaftler gesunde Mäuse mit Mäusen verglichen, deren AMPA-Rezeptoren entfernt wurden. „Die Tiere mussten hierfür einen Parcours absolvieren, der einer Klaviertastatur ähnelt“, erklärt Saab, der sich mit dieser Studie in seiner Doktorarbeit beschäftigt hat. Die Mäuse laufen über zwei Tastenreihen, deren Sensoren die Position einer laufenden Maus bestimmen helfen und Vorhersagen über das Weiterlaufen ermöglichen. Ein angeschlossener Computer lässt dann eine beliebige Taste als Hindernis emporschnellen. Zur Vorwarnung wird das Anheben der Taste mit einem kurzen Ton 300 Millisekunden zuvor angekündigt. Die Mäuse müssen den Parcours mehrere Male absolvieren und lernen dabei, das Hochschnellen einer Taste mit dem Ton in Verbindung zu bringen. Nach einigen Wiederholungen haben die Tiere ihr Laufverhalten beim Ton so angepasst, dass sie das Hindernis ohne Probleme überwinden können. Die Mäuse mit ausgeschalteten Rezeptoren waren hingegen nicht in der Lage, ihre Beinmuskulatur so zu kontrollieren, dass sie das plötzliche Hindernis ohne Fehler überwinden konnten.

„Wir belegen hiermit erstmalig, dass durch die Ausschaltung der AMPA-Rezeptoren Störungen der koordinierten Bewegung entstehen“, kommentiert Kirchhoff die Ergebnisse. Das Kleinhirn ist unter anderem für feine Abstimmungen von Muskelbewegungen zuständig. Ohne funktionsfähige Rezeptoren in der Glia dieses Hirnareals sind die Tiere dazu aber nicht mehr in der Lage. „Unter dem Mikroskop konnten wir zudem deutlich erkennen, dass sich die Fortsätze der Gliazellen von den Synapsen entfernen und die Signalübertragung zwischen den Zellen im Kleinhirn deutlich beeinträchtigt war“, berichtet Kirchhoff weiter. Die Ergebnisse belegen, dass die Bergmann Gliazellen bei Prozessen im Gehirn eine Rolle spielen. Die Homburger Forscher sind bereits der Funktion weiterer Transmitterrezeptoren der Bergmann Gliazellen auf der Spur.

An dem Projekt waren neben den Wissenschaftlern der Saar-Uni auch Forscher um Joachim Deitmer aus Kaiserslautern, um Chris De Zeeuw aus Rotterdam und Maria Rubio aus Pittsburgh beteiligt. Gefördert wurde diese Forschungsarbeit von der Max-Planck-Gesellschaft, der Deutschen Forschungsgemeinschaft sowie der Europäischen Union.

Die Studie wurde veröffentlicht: http://www.sciencexpress.org

Pressefotos zum Herunterladen finden Sie unter: http://www.uni-saarland.de/aktuelles/presse/pressefotos.

Fragen beantwortet:

Professor Frank Kirchhoff
Molekulare Physiologie
Tel.: 06841/16-26489
Mobil: 0151/16732156
E-Mail: frank.kirchhoff@uks.eu

Melanie Löw | Universität des Saarlandes
Weitere Informationen:
http://www.sciencexpress.org
http://www.uks.eu
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics