Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues zur Immuntherapie

28.02.2013
Manche T-Zellen des Immunsystems sind natürliche Feinde von Krebszellen. Ihre Wirksamkeit in der Therapie hängt offenbar ganz entscheidend davon ab, wie sie auf ihren Einsatz im Organismus vorbereitet werden.
Viele T-Zellen des Immunsystems sind grundsätzlich dazu in der Lage, Tumorzellen zu erkennen und zu zerstören. Die Wissenschaft versucht darum, die Kräfte der T-Zellen für die Behandlung von Krebs auszunutzen. An solchen Immuntherapien arbeiten weltweit viele Forschungseinrichtungen, und auch an der Universität Würzburg gibt es einschlägige Projekte.

Matthias Wölfl, Oberarzt an der Universitätskinderklinik, ist einer der Würzburger T-Zell-Experten. Als Postdoc in den USA war er bis 2007 an einem Projekt beteiligt, bei dem es um den Einsatz von T-Zellen gegen Leukämie ging. Jetzt sind die viel versprechenden Ergebnisse des Projekts im renommierten Journal „Science Translational Medicine“ veröffentlicht.

T-Zellen aktivieren und vermehren

Was bei dem Projekt in den USA gemacht wurde? „In jedem Menschen gibt es so genannte WT1-reaktive T-Zellen, die bestimmte Leukämieformen bekämpfen können“, erklärt Wölfl. Doch leider kommen diese Zellen im Körper nur in verschwindend kleinen Mengen vor: Unter einer Million T-Zellen befinden sich nur bis zu zehn der gesuchten Kandidaten.

Um die Zellen in der Therapie einsetzen zu können, müssen sie darum zuerst aus dem Blut „gefischt“ und im Labor so aktiviert werden, dass sie sich teilen und vermehren. Nach einem zwei Monate dauernden Prozess sind schließlich so viele T-Zellen vorhanden, dass sich daraus eine hoch konzentrierte Infusion für die Patienten herstellen lässt.

Überraschung nach 15 Jahren Arbeit

An diesem aufwändigen Projekt des Fred-Hutchinson-Krebsforschungszentrums in Seattle hat Wölfl drei Jahre lang mitgewirkt. Insgesamt stecken aber 15 Jahre Forschungsarbeit in den jetzt veröffentlichten Ergebnissen. Und die bergen eine Überraschung: „Für die therapeutische Wirkung ist es offenbar ganz entscheidend, auf welche Weise man die T-Zellen im Labor aktiviert“, so Wölfl.

Was die Forscher herausfanden: Kommen die T-Zellen bei ihrer Aktivierung mit dem Botenstoff Interleukin-21 in Kontakt, sind sie später weitaus langlebiger und damit auch länger gegen Tumorzellen aktiv. Im Blut der Patienten waren sie bis zu ein Jahr lang nachweisbar. Fehlte dagegen bei der Aktivierung das Interleukin, waren sie schon nach weniger als vier Wochen verschwunden.

Patienten mit hohem Rückfallrisiko

Getestet wurden die T-Zellen an elf Erwachsenen in den USA. Sie alle hatten die üblichen Therapien gegen Leukämie hinter sich und befanden sich in einer schwierigen Ausgangsposition: Alle hatten zuvor auch Stammzelltransplantationen erhalten, bei allen war das Risiko für einen Rückfall sehr hoch.

„Unter diesen Bedingungen dürfen wir froh sein, dass bei einigen Patienten eine Wirkung auf die bösartigen Zellen erreicht wurde. Drei Patienten haben sogar mehr als zwei Jahre lang leukämiefrei überlebt“, so Wölfl.

Nur elf Patienten und keine Kontrollgruppe? „Die Untersuchung war als Phase I/II-Studie angelegt, die am Anfang jeder Arzneimittelentwicklung steht. Die Frage der Wirksamkeit darf man dabei gar nicht stellen, denn dazu müssten weitaus mehr Patienten behandelt werden“, erklärt Wölfl. Dennoch habe die Untersuchung sehr wertvolle Erkenntnisse zum biologischen Verhalten der T-Zellen und zu ihrer Anwendungssicherheit geliefert. Und sie lasse erkennen, dass diese Form der Immuntherapie durchaus Behandlungserfolge verspricht.

Zusätzlicher Baustein der Therapie

„Grundsätzlich können T-Zellen nur ein zusätzlicher Baustein der Therapie sein“, betont Wölfl. Sie kommen für Patienten in Frage, bei denen die Zahl der Krebszellen durch die herkömmliche Behandlung stark verringert wurde: „In dieser Situation greift eine Immuntherapie am besten.“

Immuntherapie gegen Hirntumoren

An der Würzburger Universitätskinderklinik befasst sich Matthias Wölfl ebenfalls mit der Immuntherapie durch T-Zellen. Dabei wird in Kooperation mit den Professoren Paul Gerhardt Schlegel und Matthias Eyrich geprüft, wie T-Zellen zu aktivieren und aufzubereiten sind, damit sie die Überlebenschancen von Kindern und Jugendlichen mit bösartigen Hirntumoren (Glioblastomen) verbessern.

Die Projektpartner stecken derzeit mitten in der Arbeit, Patienten können noch nicht behandelt werden. Auch für diesen Therapieansatz gilt, dass er die herkömmliche Behandlung (Operation, Chemotherapie, Bestrahlung) ergänzen soll. Keinesfalls sei das Verfahren als „neue Wunderwaffe“ gegen Hirntumoren zu bewerten, betont Wölfl.

Das Hirntumor-Projekt wird im bayerischen Forschungsnetzwerk BayImmuNet gefördert und maßgeblich von der „Elterninitiative Aktion Regenbogen für leukämie- und tumorkranke Kinder Main-Tauber e.V.“ finanziell unterstützt.

„Transferred WT1-Reactive CD8+ T Cells Can Mediate Antileukemic Activity and Persist in Post-Transplant Patients”, Aude G. Chapuis, Gunnar B. Ragnarsson, Hieu N. Nguyen, Colette N. Chaney, Jeffrey S. Pufnock, Thomas M. Schmitt, Natalie Duerkopp, Ilana M. Roberts, Galina L. Pogosov, William Y. Ho, Sebastian Ochsenreither, Matthias Wölfl, Merav Bar, Jerald P. Radich, Cassian Yee, and Philip D. Greenberg, Science Translational Medicine, 27. Februar 2013, Vol. 5, Issue 174, p. 174ra27, DOI: 10.1126/scitranslmed.3004916

Kontakt

PD Dr. Matthias Wölfl, Universitätsklinikum Würzburg, Kinderklinik, T (0931) 201-27114, woelfl_m@klinik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Assistenzsysteme für die Blechumformung

28.07.2017 | Maschinenbau

Ruckartige Bewegung schärft Röntgenpulse

28.07.2017 | Physik Astronomie

Satellitendaten für die Landwirtschaft

28.07.2017 | Informationstechnologie