Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues EU-Projekt: Leitstrahl für die hellsten Lichtquellen der Welt

06.10.2015

Zwei Arten von Licht haben die Forschungslandschaft verändert: Im sichtbaren Wellenlängenspektrum ermöglichen moderne optische Laser Untersuchungen von ultraschnellen Prozessen, neuen Materialien oder zur Telekommunikation. Und von Synchrotronen erzeugte Röntgenstrahlung erlaubt Einblicke in winzige Strukturen und andere verborgene Teile des Nanokosmos.

Es entstanden große internationale Laser- und Beschleunigerzentren, die mit verbesserten Röntgenlicht-Eigenschaften die Forschungsmöglichkeiten erweiterten. Die EU fördert nun das 7-Millionen-Euro-Projekt European Cluster of Advanced Laser Light Sources (EUCALL), das die beiden Arten von Forschungszentren näher zusammenbringen wird.


Logos of EUCALL and the participating institutions

Das Projekt wird von European XFEL koordiniert, einem im Bau befindlichen Freie-Elektronen-Röntgenlaser in der Metropolregion Hamburg, der 2017 den Betrieb aufnehmen wird.

Tausende von Wissenschaftlern aus Forschungsgebieten wie Biomedizin, Biologie, Physik, Materialwissenschaften und vielen anderen kommen aus der ganzen Welt zu diesen Zentren, die auch als Forschungsinfrastrukturen bezeichnet werden. Sie nutzen dort die einzigartige Röntgenstrahlung und die hochmoderne Ausrüstung, die in einem Forschungslabor sonst nicht verfügbar sind.

Die auf Teilchenbeschleunigern basierenden Synchrotrone beispielsweise liefern ultrahelle Röntgenstrahlen, und die neueren Freie-Elektronen-Röntgenlaser erweitern die Grenzen der beschleunigerbasierten Technologien mit ultrakurzen Pulsen laserartigen Röntgenlichts von beispielloser Leuchtstärke. Seit einigen Jahren werden intensive Röntgenstrahlen auch mit Hilfe von speziellen optischen Lasern erzeugt und entsprechende Forschungsinfrastrukturen errichtet.

Ziel von EUCALL ist es, die Betreiber von beschleuniger- und laserbetriebenen Röntgenquellen dabei zu unterstützen, den Wissenschaftlerinnen und Wissenschaftlern aus aller Welt ein noch besseres Forschungsumfeld zu bieten.

Im Rahmen des EUCALL-Projekts arbeiten beschleuniger- und laserbetriebene Röntgen-Forschungsinfrastrukturen in Europa erstmals auf technischer, wissenschaftlicher und strategischer Ebene umfassend zusammen. Eines der Hauptziele des Projekts ist es, durch neue Synergien zwischen den Forschungsinfrastrukturen wesentliche wissenschaftliche und technologische Fortschritte zu erzielen.

Innerhalb von EUCALL können sie gemeinsame Methoden und Forschungsmöglichkeiten erarbeiten, die zu neuen Anwendungen und Innovationen auch im privaten Sektor führen können, und eine Basis schaffen, die die Zusammenarbeit auch in der Zukunft sichert. Das Projekt wird Wissenschaftlerinnen und Wissenschaftlern aus der ganzen Welt einen besseren Zugang zu den begehrten Röntgenanlagen gewähren.

Dazu werden die EUCALL-Partner auf strategischem und technologischem Gebiet kooperieren und Lösungen erarbeiten, die an allen Anlagen eingesetzt werden können. So wird es Wissenschaftlerinnen und Wissenschaftlern ermöglicht, die begrenzte Experimentierzeit effektiver zu nutzen.

Drei große internationale Forschungsinfrastrukturen spielen bei EUCALL eine Schlüsselrolle: Der European XFEL, der ultrahelle Röntgenlaserblitze für die Untersuchung von nanometerkleinen Partikeln, ultraschnellen Prozessen und extremen Zuständen der Materie erzeugen wird; die Extreme Light Infrastructure (ELI), bestehend aus drei innovativen optischen Hochleistungslaser-Laboratorien in der Tschechischen Republik, Ungarn und Rumänien, die 2018 in Betrieb gehen wird; und die European Synchrotron Radiation Facility (ESRF) in Grenoble, Frankreich, eines der bedeutendsten Röntgenforschungszentren der Welt.

Fünf weitere Institute sind außerdem am Projekt beteiligt: Das Deutsche Elektronen-Synchrotron DESY in Hamburg mit den Röntgenquellen FLASH und PETRA III; Elettra, das in Triest, Italien, den zweistufigen Freie-Elektronen-Laser FERMI als Nutzereinrichtung betreibt; das Helmholtz-Zentrum Dresden-Rossendorf, das optische Hochleistungslaser-Anlagen und einen Freie-Elektronen-Laser betreibt; die Universität Lund, die in Schweden das Synchrotron MAX-IV baut; und das Paul-Scherrer-Institut, das in Villigen, Schweiz, den Freie-Elektronen-Röntgenlaser SwissFEL baut.

Die beteiligten Forschungsinfrastrukturen verfügen über sehr umfangreiche Erfahrungen, die an einer Vielzahl von laser- und beschleunigerbasierten Röntgenlabors gesammelt wurden. EUCALL umfasst deshalb auch die bestehenden EU-Kooperationen dieser Einrichtungen, LASERLAB-Europe und FELs of Europe, sowie drei Partner, die eng mit ELI zusammenarbeiten. „EUCALL ermöglicht es laser- und beschleunigerbasierten Röntgenforschungseinrichtungen in Europa, gemeinsame Strategien und neue Technologien zu entwickeln, um den wissenschaftlichen Nutzern noch mehr Forschungsmöglichkeiten zu eröffnen“, erklärt Thomas Tschentscher, wissenschaftlicher Direktor bei European XFEL und EUCALL-Projektkoordinator. „Das Projekt wird so dazu beitragen, die führende Rolle der europäischen Forschung in vielen wichtigen Bereichen zu sichern.“

„Passend zum Internationalen Jahr des Lichts ist EUCALL der erste ernsthafte Versuch, Forscher aus zwei unterschiedlichen Disziplinen zusammenzubringen, die beide mit Röntgenlicht forschen, allerdings mit unterschiedlichem wissenschaftlichen und technischen Hintergrund“, betont ELI-Generaldirektor Prof. Wolfgang Sandner. „ELI begrüßt die Erweiterung der Forschungsmöglichkeiten und das Innovationspotenzial, die sich für unsere europäischen und internationalen Nutzer aus dieser Zusammenarbeit ergeben.“

Die Fördermittel der EU werden von den einzelnen Forschungsinfrastrukturen verwendet, um einen Teil der Entwicklungskosten für neue Technologien zu finanzieren, Effizienzstudien durchzuführen und Mitarbeiterinnen und Mitarbeiter speziell für EUCALL-Aufgaben einzustellen. Zu diesen Aufgaben gehören vier Forschungsinitiativen zur Entwicklung von gemeinsam nutzbarer Hard- und Software. Ein Forschungsziel ist die Entwicklung einer Simulationsplattform, mit der die Nutzer ihre Experimente genauer modellieren können, bevor sie zur Durchführung der Versuche an eine Anlage kommen. Damit sollen Nutzeranträge und Experimente besser fokussiert werden, so dass die Wissenschaftler die begrenzte Experimentierzeit optimal nutzen können. Ein weiteres Forschungsziel ist die Entwicklung eines anpassbaren Software- und Firmware-Pakets zur Verarbeitung des hohen Datenstroms, der bei den hohen oder ultrahohen Wiederholraten der Röntgen- und Laserblitze an diesen Anlagen entsteht.

Die beiden anderen Forschungsbereiche befassen sich mit der Entwicklung gemeinsamer wissenschaftlicher Hardware. Ein Ziel ist es, ein effizientes Verfahren zu erarbeiten, mit dem Nutzer mittels Elektronen- und Lichtmikroskopie vorab prüfen können, an welchen Stellen Proben am besten im Röntgenstrahl untersucht werden sollten. Schließlich soll eine Reihe modernster Werkzeuge zur Röntgenstrahldiagnose entwickelt werden, mit denen die Intensität des einfallenden Photonenstrahls und die Wellenfront der kohärenten Röntgenstrahlen genau gemessen und der Ankunftszeitpunkt der Röntgenpulse an der Probe zur Durchführung ultraschneller Experimente exakt bestimmt werden kann.

European XFEL wird am 29. und 30. Oktober in Hamburg ein EUCALL-Auftakttreffen veranstalten. Über die dreijährige Laufzeit von EUCALL hinaus sieht das Projekt vor, eine langfristige Kooperation zwischen den beteiligten Forschungsinfrastrukturen zu etablieren mit dem Ziel, die Forschungsmöglichkeiten weiterzuentwickeln und eine engeren Zusammenarbeit zu fördern.

Das Projekt wird durch die Europäische Kommission im Rahmenprogramm für Forschung und Innovation HORIZON 2020 unter der Finanzhilfevereinbarung Nr. 654220 gefördert.

Pressekontakt:
Dr Bernd Ebeling
+49 40 8998 6921
press@xfel.eu

Wissenschaftliche Ansprechpartner:
Dr Thomas Tschentscher
EUCALL-Projektkoordinator
+49 40 8998 3904
thomas.tschentscher@xfel.eu

Über European XFEL
In der Metropolregion Hamburg entsteht mit dem European XFEL eine Großforschungsanlage der Superlative: 27 000 Röntgenlaserblitze pro Sekunde und eine Leuchtstärke, die milliardenfach höher ist als die besten Röntgenstrahlungsquellen herkömmlicher Art, werden völlig neue Forschungsmöglichkeiten eröffnen. Forschergruppen aus aller Welt können an dem europäischen Röntgenlaser atomare Details von Viren und Zellen entschlüsseln, dreidimensionale Aufnahmen im Nanokosmos machen, chemische Reaktionen filmen und Vorgänge wie die im Inneren von Planeten untersuchen. Die European XFEL GmbH ist eine gemeinnützige Forschungsorganisation, die eng mit dem Forschungszentrum DESY und weiteren internationalen Institutionen zusammenarbeitet. Bei Beginn des Nutzerbetriebs im Jahr 2017 wird sie rund 280 Menschen beschäftigen. Mit Kosten von 1,22 Milliarden Euro (Preisniveau 2005) für Bau und Inbetriebnahme und einer Länge von 3,4 Kilometer ist European XFEL eines der größten und ambitioniertesten europäischen Forschungsprojekte. Derzeit beteiligen sich zwölf Länder: Dänemark, Deutschland, Frankreich, Griechenland, Italien, Polen, Russland, Schweden, die Schweiz, die Slowakei, Spanien und Ungarn.

Weitere Informationen:

http://www.xfel.eu/de

Dr. Bernd Ebeling | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie