Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues BMBF-Projekt „DYNAMO“ an der FH Kaiserslautern

21.03.2012
Regelmäßig stellt die Fachhochschule Kaiserslautern ihr erstklassiges Niveau nicht nur im Rahmen der praxisorientierten Lehre, sondern auch auf dem Gebiet der angewandten Forschung unter Beweis.

Ein weiterer Beleg für die Leistungsstärke und die Möglichkeiten der FH-Forschung ist mit „DYNAMO“ ein neues Projekt, das am FH-Standort Zweibrücken angesiedelt ist und für drei Jahre vom Bundesministerium für Bildung und Forschung (BMBF) mit rund 260.000 Euro gefördert wird. Unter der Leitung von Prof. Dr. Hildegard Möbius untersucht DYNAMO die Dynamik und Struktur magnetischer Nanopartikel in Polymer-Matrix an Oberflächen.

Magnetische Nanopartikel gewinnen im biomedizinischen Bereich zunehmend an Bedeutung und sind aufgrund ihrer kontrollierbaren Größe vielfältig einsetzbar. Ihre Dimensionen können kleiner oder vergleichbar mit denen von Zellen (10-100µm), Viren (20-450nm) oder Proteinen (5-50nm) eingestellt werden. Aufgrund ihrer magnetischen Eigenschaften können sie mittels Magnetfeldgradienten (der Verlauf eines inhomogenen Magnetfeldes von "schwach nach stark“) manipuliert werden. In der Molekularbiologie werden sie beispielsweise eingesetzt, um Zellen zu separieren. In der Medizintechnik reichen die Einsatzmöglichkeiten von der Diagnostik bis hin zur Therapie. Beispielsweise dienen magnetische Nanopartikel in der Diagnostik als Kontrastmittel in der Kernspintomographie.

In der Krebstherapie verspricht man sich therapeutische Anwendungen, die im Vergleich zu den häufig eingesetzten Krebsbekämpfungsmethoden der Chemo- und Radiotherapie keine bzw. nur geringe Nebenwirkungen zeigen. Derzeitige Entwicklungsarbeiten nutzen das magnetische Drug Targeting (MDT) und die magnetische Hyperthermie (MHT), bei denen Suspensionen magnetischer Nanopartikel eingesetzt werden.

Im magnetischen Drug Targeting werden die magnetischen Nanopartikel als Transporter für Chemotherapeutika genutzt und mit Hilfe eines starken Magnetfelds in die Tumorregion gebracht, wo sie lokal ihre Wirkung entfalten. Im Falle der Hyperthermie führt das Anlegen eines magnetischen Wechselfelds zu Ummagnetisierungsprozessen in den Nanopartikeln und so zu einer Erwärmung des Tumorgewebes. So kann eine Tumorremmission ohne den Einsatz von Strahlung oder Medikamenten erzielt werden.

Bei all den oben genannten Einsatzmöglichkeiten spielt die Wechselwirkung der magnetischen Nanopartikel mit Zellen eine entscheidende Rolle. Im Projekt „DYNAMO“ soll diese Interaktion gezielt untersucht und analysiert werden, weshalb neben der Arbeitsgruppe „Experimentalphysik“ von Frau Prof. Dr. Möbius ebenfalls die Arbeitsgruppen „Enterisches Nervensystem“ von Prof. Dr. med. Karl-Herbert Schäfer (FH Kaiserslautern) und „Molekularbiologie, Biotechnologie und Biochemie“ von Prof. Dr. Oliver Müller (FH Kaiserslautern) beteiligt sind. Alle Arbeitsgemeinschaft sind dabei im angewandten Forschungsschwerpunkt Integrierte Miniaturisierte Systeme (IMS) versammelt, der sich der Entwicklung solcher Systeme und deren Einsetzbarkeit im täglichen Leben widmet.

Bei der Dimension und Vielschichtigkeit des Projektes sind natürlich auch FH-externe Forschungseinrichtungen beteiligt: So werden in Zusammenarbeit mit dem Max-Planck-Institut für Polymerforschung in Mainz in funktionalisierten Polymeren verkapselte Magnetit-Nanopartikel hergestellt und anschließend hinsichtlich ihrer Wechselwirkung mit Oberflächen und Zellen charakterisiert. Hierbei wird die Struktur, die Dynamik sowie die Wechselwirkung zwischen Struktur und Dynamik bei Anlagerung der Nanopartikel an simulierte Zellmembranen sowie die Aufnahme in Nervenzellen untersucht.

Weitere Infos im Internet:
Forschungsschwerpunkt IMS: http://www.fh-kl.de/fh/forschung/forschungsschwerpunkte/ims.html
Ihr Ansprechpartner:
Prof. Dr. Hildegard Möbius +++ Tel: 0631-3724-5412 +++ Mail: Hildegard.Moebius@fh-kl.de
V.i.S.d.P. Prof. Dr. Konrad Wolf, Präsident der FH Kaiserslautern ++ Tel: 0631/3724-2100 ++ Mail: praesident@fh-kl.de
Red.: Pressestelle Standort Kaiserslautern ++ Elvira Grub ++ Tel: 0631/3724-2163 ++ Mail: elvira.grub@fh-kl.de
Pressestelle Standort Pirmasens ++ Christiane Barth ++ Tel: 06331/2483-81 ++ Mail: christiane.barth@fh-kl.de

Pressestelle Standort Zweibrücken ++ Wolfgang Knerr ++ Tel: 0631/3724-5136 ++ Mail: wolfgang.knerr@fh-kl.de

Wolfgang Knerr | idw
Weitere Informationen:
http://www.fh-kl.de/fh/forschung/forschungsschwerpunkte/ims.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikro-U-Boote für den Magen

24.01.2017 | Biowissenschaften Chemie

Echoortung - Lernen, den Raum zu hören

24.01.2017 | Biowissenschaften Chemie

RWI/ISL-Containerumschlag-Index beendet das Jahr 2016 mit Rekordwert

24.01.2017 | Wirtschaft Finanzen