Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Antibiotikum gegen Krankenhauskeime

10.10.2014

HZI-Forscher entdecken Substanzen gegen multiresistente Keime.

Multiresistente Staphylokokken zählen zu den gefürchtetsten Erregern in Krankenhäusern, da sie kaum noch oder gar nicht mehr therapierbar sind.


Staphylococcus aureus (rot) ist einer der Keime, gegen den die jetzt beschriebenen Naturstoffe Disciformycin A und B (links oben die Struktur von Disciformycin B) wirksam sind.

HZI / Rohde

Wissenschaftlern des Helmholtz-Instituts für Pharmazeutische Forschung Saarland (HIPS) und des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig ist es nun gelungen, zwei Substanzen aus den im Boden lebenden Myxobakterien zu isolieren, die hochwirksam gegen die Erreger sind.

Damit legen die Forscher die Grundlage für die Herstellung neuer Medikamente. Ihre Ergebnisse publizieren sie in der Fachzeitschrift „Angewandte Chemie International Edition“.

Staphylococcus aureus ist der häufigste Verursacher von Krankenhausinfektionen in Deutschland. Beim Menschen kann der Erreger zu Wundinfektionen, Atemwegsentzündungen und Harnwegsinfektionen führen.

Da das Bakterium resistent gegen eine Vielzahl von Antibiotika ist, wird es auch als multiresistenter oder methicillin-resistenter Staphylococcus aureus – kurz MRSA – bezeichnet. Die Erreger sind mit vorhandenen Medikamenten kaum noch oder gar nicht mehr zu therapieren, weswegen neue Wirkstoffe gefunden werden müssen, um die gefährlichen Keime zu besiegen.

„Neue Antibiotika zu finden ist allerdings schwierig, da sie viele verschiedene Qualitäten mitbringen müssen“, sagt Prof. Rolf Müller, Geschäftsführender Direktor des HIPS.

Er und seine Kollegen aus der Abteilung „Mikrobielle Wirkstoffe“ am HZI haben jedoch eine neue Grundstruktur in einem Myxobakterium gefunden, die hochwirksam gegen multiresistente Keime ist. „Wir konnten zeigen, dass Disciformycin A und B hochaktiv gegen resistente Staphylokokken und andere Erreger sind. Außerdem konnten wir nachweisen, dass keine Kreuzresistenz gegenüber anderen eingesetzten Antibiotika vorliegt“, sagt Müller.

„Sie wirken also nicht genauso wie bereits bekannte Antibiotika.“ Das gefundene Antibiotikum bekämpft grampositive Bakterien, ohne der menschlichen oder tierischen Zelle zu schaden. „Es besitzt damit eine hohe potentielle therapeutische Breite“, so Dr. Markus Nett vom Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut (HKI) in Jena, dessen Arbeitsgruppe eine sehr ähnliche Substanz entdeckt hat.

Bevor die gefundenen Substanzen auch wirklich als Antibiotikum zum Einsatz kommen, stehen noch einige Schritte an. Zunächst muss die Produktion der Stoffe optimiert werden, um hinreichend Substanz zur Verfügung zu erhalten. Anschließend folgen chemische Veränderungen des Wirkstoffkandidaten und die pharmazeutischen Eigenschaften werden überprüft.

Diese nächsten Schritte wollen die Forscher gemeinsam mit ihren Jenaer Kollegen einleiten: die Patentanmeldung des Stoffes und seine weitere Erforschung. Dass gleich mehrere Forscher in Deutschland Moleküle ähnlicher Natur gefunden haben und intensiv daran forschen, bestärkt Rolf Müller: „Das zeigt uns, dass wir auf der richtigen Spur sind und sich die Weiterentwicklung lohnt.“

Außerdem versuchen die Forscher herauszufinden, wie die neu entdeckten Stoffe ihre Wirkung genau entfalten. „In diesem Bereich haben wir schon einige Fortschritte gemacht und vieles deutet bisher darauf hin, dass es um einen neuen Wirkmechanismus handelt“, sagt Müller. „Aber daran arbeiten wir momentan noch intensiv.“

Erst danach können Studien am Tiermodell folgen, die für den Einsatz als Medikament benötigt werden. Diese dienen vor allem dazu herauszufinden, wie toxisch die Wirkung der neuen Substanzen für den Körper ist. „Nachfolgend muss das Molekül dann in einer Phase-I-Studie am Menschen getestet werden. Aber bis dahin ist es ein langer Weg und vermutlich wird eine Pharmafirma als Partner gefunden werden müssen“, sagt Müller.

Originalpublikation:
F. Surup, K. Viehrig, K.I. Mohr, J. Herrmann, R. Jansen, R. Müller,
Disciformycins A and B: 12-Membered Macrolide Glycoside Antibiotics from the Myxobacterium Pyxidicoccus fallax Active against Multiresistant Staphylococci.
Angewandte Chemie Int. Ed., 2014 . doi: 10.1002/anie.201406973

Das Helmholtz-Zentrum für Infektionsforschung (HZI)
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern.
http://www.helmholtz-hzi.de

Das Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS)
Das Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) ist eine Außenstelle des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig und wurde im Jahr 2009 vom HZI und der Universität des Saarlandes gegründet. Die Forscher suchen hier insbesondere nach neuen Wirkstoffen gegen Infektionskrankheiten, optimieren diese für die Anwendung am Menschen und erforschen, wie sie am besten durch den Körper zum Wirkort transportiert werden können.

Weitere Informationen:

http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/neues_ant... - Diese Pressemitteilung auf http://helmholtz-hzi.de
http://dx.doi.org/10.1002/anie.201406973 - Link zur Originalpublikation

Dr. Jan Grabowski | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie