Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Angriffsziel für maßgeschneiderte Antibiotika entdeckt: Sonderweg macht Bakterien angreifbar

03.07.2009
Immer mehr Bakterienstämme entwickeln Mehrfachresistenzen gegen die bisher lebensrettenden Antibiotika. Mediziner warnen, dass die Todesraten aufgrund von Infektionen schon in naher Zukunft dramatisch ansteigen könnten.

Forscher der Technischen Universität München (TUM) haben nun einen Stoffwechselschritt aufgeklärt, der bei vielen aggressiven Mikroorganismen, wie dem Turberkulose- oder Malariaerreger vorkommt und deshalb ein lohnendes Ziel für eine neue Klasse von Antibiotika werden könnte.

Die Ergebnisse ihrer Arbeit stellen die Wissenschaftler in der aktuellen Ausgabe der Zeitschrift Angewandte Chemie vor.

Antibiotika behindern die Produktion lebenswichtiger Stoffe in Mikroorganismen und halten die gefährlichen Eindringlinge so in Schach. Immer mehr Bakterienstämme entwickeln jedoch inzwischen Mehrfach-Resistenzen, sodass die bisher lebensrettenden Medikamente versagen. Daher suchen Wissenschaftler auf der ganzen Welt fieberhaft nach Reaktionsschritten, die für die zu bekämpfenden Mikroorganismen lebenswichtig sind, beim Menschen aber keine oder keine relevante Funktion haben. Ein Team um Professor Michael Groll, Dr. Jörg Eppinger und Dr. Tobias Gräwert, Biochemiker an der TU München, haben nun die strukturellen Grundlagen für einen solchen Reaktionsschritt detailliert beschrieben.

Die lebenswichtigen Naturstoffe aus der Terpen- und Steroidklasse stellen die Zellen fast aller Organismen aus den kleinen Isoprenbausteinen Dimethylallylpyrophosphat (DMAPP) und Isopentenylpyrophosphat (IPP) her. Säugetiere und eine große Zahl weiterer Organismen bauen diese über den so genannten Mevalonat-Weg auf. Fast alle krankmachenden Bakterien, so auch der Malariaerreger Plasmodium falciparum, haben dagegen eine andere Möglichkeit gefunden, diese wichtigen Substanzen herzustellen. Ihr Sonderweg könnte den Bakterien nun zum Verhängnis werden: Die TUM-Wissenschaftler haben die strukturellen Grundlagen des letzten Schritts der bakteriellen Isopren-Synthese aufgeklärt. Das entscheidende Enzym verfügt über eine äußerst ungewöhnliche Struktur, ähnlich der eines dreiblättrigen Kleeblatts. Es könnte sich als entscheidender Angriffspunkt für neue, maßgeschneiderter Antibiotika erweisen.

Die Arbeiten zur Aufklärung der bakteriellen Isoprenbaustein-Produktion wurden bereits vor zwölf Jahren am Lehrstuhl für Organische Chemie und Biochemie durch Professor Adelbert Bacher in Zusammenarbeit mit den Privatdozenten Wolfgang Eisenreich und Felix Rohdich begonnen. Im Laufe der Jahre entdeckte das Team die meisten Reaktionsschritte des neuen Stoffwechselwegs. Der letzte vom Enzym IspH katalysierte Schritt entzog sich jedoch hartnäckig der strukturellen Aufklärung. Die früheren Messungen legten nahe, dass das aktive Zentrum ein Eisen-Schwefel-Cluster mit drei Eisen und vier Schwefelatomen sein müsste. Andere Wissenschaftler zweifelten die Ergebnisse an, und jahrelang gelang es nicht, eine Kristallstruktur des Enzyms zu bestimmen, die den Beweis hätte liefern können.

Größtes Problem dabei war die Sauerstoffempfindlichkeit des Enzyms, das an der Luft schon in kürzester Zeit degeneriert und dabei Struktur und Funktion einbüßt. Erst kürzlich gelang es einer Arbeitsgruppe von der Justus-Liebig-Universität in Gießen, die Röntgenkristallstruktur der offenen Form des Enzyms zu entschlüsseln. Doch diese Struktur lieferte kaum Informationen zum Ablauf der vom Enzym katalysierten Umsetzung. Das Forscherteam um Professor Groll, Dr. Eppinger und Dr. Gräwert gelang es nun, auch die Röntgenkristallstruktur der geschlossenen Form zu lösen, die die genaue Faltung der Proteinkette und die chemische Umgebung des aktiven Zentrums zeigt.

Nun konnten sie durch Computersimulationen und Mutagenese-Experimente, bei denen Escherichia coli-Bakterien dazu gebracht wurden fehlerhafte IspH-Enzyme zu synthetisieren, den Mechanismus der Reaktion detailliert untersuchen. Röntgenkristallstruktur, kinetische Messungen und Mutagenesestudien bestätigten schließlich die schon vor Jahren vorgeschlagene, ungewöhnliche Anordnung von drei Eisen und vier Schwefelatomen im aktiven Zentrum des Enzyms.

"Nachdem nun Ort, chemischer Ablauf und beteiligte Partner der IspH-Reaktion bekannt sind," erläutert Groll, "besteht ein neuer Ansatzpunkt gezielt Substanzen zu entwickeln, die den letzten Schritt der bakteriellen Synthese von Isoprenbausteinen blockieren und Erreger gezielt abtöten könnten. Da Enzym und Reaktion in Säugetieren nicht vorkommen, sollten diese Verbindungen für Menschen keine oder nur geringe Nebenwirkungen besitzen."

Die Arbeiten wurden unterstützt von der Hans-Fischer-Gesellschaft und dem Stifterverband für die Deutsche Wissenschaft (Projekt-Nr. 11047: Forschungsdozentur Molekulare Katalyse).

Originalpublikation:

Das IspH-Protein von Escherichia coli - Struktur und Mechanismus;
Tobias Gräwert, Felix Rohdich, Ingrid Span, Adelbert Bacher, Wolfgang Eisenreich, Jörg Eppinger, and Michael Groll

Angew. Chem., Vol. 121, Issue 18, 12165-12177, June, 2009, DOI 10.1002/ange.200900548

Kontakt:

Prof. Dr. Michael Groll
Technische Universität München
Department Chemie
Lichtenbergstr. 4, D-85748 Garching
Tel.: +49 89 289 13360
Fax: +49 89 289 13363

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www3.interscience.wiley.com/journal/122474116/abstract
http://portal.mytum.de/welcome

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie