Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Angriffsziel für maßgeschneiderte Antibiotika entdeckt: Sonderweg macht Bakterien angreifbar

03.07.2009
Immer mehr Bakterienstämme entwickeln Mehrfachresistenzen gegen die bisher lebensrettenden Antibiotika. Mediziner warnen, dass die Todesraten aufgrund von Infektionen schon in naher Zukunft dramatisch ansteigen könnten.

Forscher der Technischen Universität München (TUM) haben nun einen Stoffwechselschritt aufgeklärt, der bei vielen aggressiven Mikroorganismen, wie dem Turberkulose- oder Malariaerreger vorkommt und deshalb ein lohnendes Ziel für eine neue Klasse von Antibiotika werden könnte.

Die Ergebnisse ihrer Arbeit stellen die Wissenschaftler in der aktuellen Ausgabe der Zeitschrift Angewandte Chemie vor.

Antibiotika behindern die Produktion lebenswichtiger Stoffe in Mikroorganismen und halten die gefährlichen Eindringlinge so in Schach. Immer mehr Bakterienstämme entwickeln jedoch inzwischen Mehrfach-Resistenzen, sodass die bisher lebensrettenden Medikamente versagen. Daher suchen Wissenschaftler auf der ganzen Welt fieberhaft nach Reaktionsschritten, die für die zu bekämpfenden Mikroorganismen lebenswichtig sind, beim Menschen aber keine oder keine relevante Funktion haben. Ein Team um Professor Michael Groll, Dr. Jörg Eppinger und Dr. Tobias Gräwert, Biochemiker an der TU München, haben nun die strukturellen Grundlagen für einen solchen Reaktionsschritt detailliert beschrieben.

Die lebenswichtigen Naturstoffe aus der Terpen- und Steroidklasse stellen die Zellen fast aller Organismen aus den kleinen Isoprenbausteinen Dimethylallylpyrophosphat (DMAPP) und Isopentenylpyrophosphat (IPP) her. Säugetiere und eine große Zahl weiterer Organismen bauen diese über den so genannten Mevalonat-Weg auf. Fast alle krankmachenden Bakterien, so auch der Malariaerreger Plasmodium falciparum, haben dagegen eine andere Möglichkeit gefunden, diese wichtigen Substanzen herzustellen. Ihr Sonderweg könnte den Bakterien nun zum Verhängnis werden: Die TUM-Wissenschaftler haben die strukturellen Grundlagen des letzten Schritts der bakteriellen Isopren-Synthese aufgeklärt. Das entscheidende Enzym verfügt über eine äußerst ungewöhnliche Struktur, ähnlich der eines dreiblättrigen Kleeblatts. Es könnte sich als entscheidender Angriffspunkt für neue, maßgeschneiderter Antibiotika erweisen.

Die Arbeiten zur Aufklärung der bakteriellen Isoprenbaustein-Produktion wurden bereits vor zwölf Jahren am Lehrstuhl für Organische Chemie und Biochemie durch Professor Adelbert Bacher in Zusammenarbeit mit den Privatdozenten Wolfgang Eisenreich und Felix Rohdich begonnen. Im Laufe der Jahre entdeckte das Team die meisten Reaktionsschritte des neuen Stoffwechselwegs. Der letzte vom Enzym IspH katalysierte Schritt entzog sich jedoch hartnäckig der strukturellen Aufklärung. Die früheren Messungen legten nahe, dass das aktive Zentrum ein Eisen-Schwefel-Cluster mit drei Eisen und vier Schwefelatomen sein müsste. Andere Wissenschaftler zweifelten die Ergebnisse an, und jahrelang gelang es nicht, eine Kristallstruktur des Enzyms zu bestimmen, die den Beweis hätte liefern können.

Größtes Problem dabei war die Sauerstoffempfindlichkeit des Enzyms, das an der Luft schon in kürzester Zeit degeneriert und dabei Struktur und Funktion einbüßt. Erst kürzlich gelang es einer Arbeitsgruppe von der Justus-Liebig-Universität in Gießen, die Röntgenkristallstruktur der offenen Form des Enzyms zu entschlüsseln. Doch diese Struktur lieferte kaum Informationen zum Ablauf der vom Enzym katalysierten Umsetzung. Das Forscherteam um Professor Groll, Dr. Eppinger und Dr. Gräwert gelang es nun, auch die Röntgenkristallstruktur der geschlossenen Form zu lösen, die die genaue Faltung der Proteinkette und die chemische Umgebung des aktiven Zentrums zeigt.

Nun konnten sie durch Computersimulationen und Mutagenese-Experimente, bei denen Escherichia coli-Bakterien dazu gebracht wurden fehlerhafte IspH-Enzyme zu synthetisieren, den Mechanismus der Reaktion detailliert untersuchen. Röntgenkristallstruktur, kinetische Messungen und Mutagenesestudien bestätigten schließlich die schon vor Jahren vorgeschlagene, ungewöhnliche Anordnung von drei Eisen und vier Schwefelatomen im aktiven Zentrum des Enzyms.

"Nachdem nun Ort, chemischer Ablauf und beteiligte Partner der IspH-Reaktion bekannt sind," erläutert Groll, "besteht ein neuer Ansatzpunkt gezielt Substanzen zu entwickeln, die den letzten Schritt der bakteriellen Synthese von Isoprenbausteinen blockieren und Erreger gezielt abtöten könnten. Da Enzym und Reaktion in Säugetieren nicht vorkommen, sollten diese Verbindungen für Menschen keine oder nur geringe Nebenwirkungen besitzen."

Die Arbeiten wurden unterstützt von der Hans-Fischer-Gesellschaft und dem Stifterverband für die Deutsche Wissenschaft (Projekt-Nr. 11047: Forschungsdozentur Molekulare Katalyse).

Originalpublikation:

Das IspH-Protein von Escherichia coli - Struktur und Mechanismus;
Tobias Gräwert, Felix Rohdich, Ingrid Span, Adelbert Bacher, Wolfgang Eisenreich, Jörg Eppinger, and Michael Groll

Angew. Chem., Vol. 121, Issue 18, 12165-12177, June, 2009, DOI 10.1002/ange.200900548

Kontakt:

Prof. Dr. Michael Groll
Technische Universität München
Department Chemie
Lichtenbergstr. 4, D-85748 Garching
Tel.: +49 89 289 13360
Fax: +49 89 289 13363

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www3.interscience.wiley.com/journal/122474116/abstract
http://portal.mytum.de/welcome

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kaltwasserkorallen: Versauerung schadet, Wärme hilft
27.04.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Auf dem Gipfel der Evolution – Flechten bei der Artbildung zugeschaut
27.04.2017 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Infrarotkamera für die Metallindustrie bis 2000 °C

28.04.2017 | Messenachrichten

Wie Coronaviren Zellen umprogrammieren

28.04.2017 | Interdisziplinäre Forschung

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungsnachrichten