Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Angriffsziel für maßgeschneiderte Antibiotika entdeckt: Sonderweg macht Bakterien angreifbar

03.07.2009
Immer mehr Bakterienstämme entwickeln Mehrfachresistenzen gegen die bisher lebensrettenden Antibiotika. Mediziner warnen, dass die Todesraten aufgrund von Infektionen schon in naher Zukunft dramatisch ansteigen könnten.

Forscher der Technischen Universität München (TUM) haben nun einen Stoffwechselschritt aufgeklärt, der bei vielen aggressiven Mikroorganismen, wie dem Turberkulose- oder Malariaerreger vorkommt und deshalb ein lohnendes Ziel für eine neue Klasse von Antibiotika werden könnte.

Die Ergebnisse ihrer Arbeit stellen die Wissenschaftler in der aktuellen Ausgabe der Zeitschrift Angewandte Chemie vor.

Antibiotika behindern die Produktion lebenswichtiger Stoffe in Mikroorganismen und halten die gefährlichen Eindringlinge so in Schach. Immer mehr Bakterienstämme entwickeln jedoch inzwischen Mehrfach-Resistenzen, sodass die bisher lebensrettenden Medikamente versagen. Daher suchen Wissenschaftler auf der ganzen Welt fieberhaft nach Reaktionsschritten, die für die zu bekämpfenden Mikroorganismen lebenswichtig sind, beim Menschen aber keine oder keine relevante Funktion haben. Ein Team um Professor Michael Groll, Dr. Jörg Eppinger und Dr. Tobias Gräwert, Biochemiker an der TU München, haben nun die strukturellen Grundlagen für einen solchen Reaktionsschritt detailliert beschrieben.

Die lebenswichtigen Naturstoffe aus der Terpen- und Steroidklasse stellen die Zellen fast aller Organismen aus den kleinen Isoprenbausteinen Dimethylallylpyrophosphat (DMAPP) und Isopentenylpyrophosphat (IPP) her. Säugetiere und eine große Zahl weiterer Organismen bauen diese über den so genannten Mevalonat-Weg auf. Fast alle krankmachenden Bakterien, so auch der Malariaerreger Plasmodium falciparum, haben dagegen eine andere Möglichkeit gefunden, diese wichtigen Substanzen herzustellen. Ihr Sonderweg könnte den Bakterien nun zum Verhängnis werden: Die TUM-Wissenschaftler haben die strukturellen Grundlagen des letzten Schritts der bakteriellen Isopren-Synthese aufgeklärt. Das entscheidende Enzym verfügt über eine äußerst ungewöhnliche Struktur, ähnlich der eines dreiblättrigen Kleeblatts. Es könnte sich als entscheidender Angriffspunkt für neue, maßgeschneiderter Antibiotika erweisen.

Die Arbeiten zur Aufklärung der bakteriellen Isoprenbaustein-Produktion wurden bereits vor zwölf Jahren am Lehrstuhl für Organische Chemie und Biochemie durch Professor Adelbert Bacher in Zusammenarbeit mit den Privatdozenten Wolfgang Eisenreich und Felix Rohdich begonnen. Im Laufe der Jahre entdeckte das Team die meisten Reaktionsschritte des neuen Stoffwechselwegs. Der letzte vom Enzym IspH katalysierte Schritt entzog sich jedoch hartnäckig der strukturellen Aufklärung. Die früheren Messungen legten nahe, dass das aktive Zentrum ein Eisen-Schwefel-Cluster mit drei Eisen und vier Schwefelatomen sein müsste. Andere Wissenschaftler zweifelten die Ergebnisse an, und jahrelang gelang es nicht, eine Kristallstruktur des Enzyms zu bestimmen, die den Beweis hätte liefern können.

Größtes Problem dabei war die Sauerstoffempfindlichkeit des Enzyms, das an der Luft schon in kürzester Zeit degeneriert und dabei Struktur und Funktion einbüßt. Erst kürzlich gelang es einer Arbeitsgruppe von der Justus-Liebig-Universität in Gießen, die Röntgenkristallstruktur der offenen Form des Enzyms zu entschlüsseln. Doch diese Struktur lieferte kaum Informationen zum Ablauf der vom Enzym katalysierten Umsetzung. Das Forscherteam um Professor Groll, Dr. Eppinger und Dr. Gräwert gelang es nun, auch die Röntgenkristallstruktur der geschlossenen Form zu lösen, die die genaue Faltung der Proteinkette und die chemische Umgebung des aktiven Zentrums zeigt.

Nun konnten sie durch Computersimulationen und Mutagenese-Experimente, bei denen Escherichia coli-Bakterien dazu gebracht wurden fehlerhafte IspH-Enzyme zu synthetisieren, den Mechanismus der Reaktion detailliert untersuchen. Röntgenkristallstruktur, kinetische Messungen und Mutagenesestudien bestätigten schließlich die schon vor Jahren vorgeschlagene, ungewöhnliche Anordnung von drei Eisen und vier Schwefelatomen im aktiven Zentrum des Enzyms.

"Nachdem nun Ort, chemischer Ablauf und beteiligte Partner der IspH-Reaktion bekannt sind," erläutert Groll, "besteht ein neuer Ansatzpunkt gezielt Substanzen zu entwickeln, die den letzten Schritt der bakteriellen Synthese von Isoprenbausteinen blockieren und Erreger gezielt abtöten könnten. Da Enzym und Reaktion in Säugetieren nicht vorkommen, sollten diese Verbindungen für Menschen keine oder nur geringe Nebenwirkungen besitzen."

Die Arbeiten wurden unterstützt von der Hans-Fischer-Gesellschaft und dem Stifterverband für die Deutsche Wissenschaft (Projekt-Nr. 11047: Forschungsdozentur Molekulare Katalyse).

Originalpublikation:

Das IspH-Protein von Escherichia coli - Struktur und Mechanismus;
Tobias Gräwert, Felix Rohdich, Ingrid Span, Adelbert Bacher, Wolfgang Eisenreich, Jörg Eppinger, and Michael Groll

Angew. Chem., Vol. 121, Issue 18, 12165-12177, June, 2009, DOI 10.1002/ange.200900548

Kontakt:

Prof. Dr. Michael Groll
Technische Universität München
Department Chemie
Lichtenbergstr. 4, D-85748 Garching
Tel.: +49 89 289 13360
Fax: +49 89 289 13363

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www3.interscience.wiley.com/journal/122474116/abstract
http://portal.mytum.de/welcome

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics