Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Wirkstoff gegen tropische Parasiten

12.07.2012
Gegen die Afrikanische Schlafkrankheit werden dringend bessere Medikamente benötigt. Würzburger Wissenschaftler haben einen viel versprechenden neuen Wirkstoff entwickelt, den es nun weiter zu optimieren gilt.
Die Afrikanische Schlafkrankheit wird von dem tropischen Parasiten Trypanosoma brucei ausgelöst. Dieser einzellige, wurmartige Organismus ist in Afrika südlich der Sahara verbreitet. Auf den Menschen kann er durch den Stich einer Tse-Tse-Fliege übertragen werden. Die Infizierten bekommen zuerst Kopf- und Gliederschmerzen, dann stellen sich Verwirrung, Krämpfe und andere Symptome ein. Am Ende fallen sie in eine Art Wachkoma und sterben. Jedes Jahr kommt es zu 30.000 Neuinfektionen.

Impfstoffe gegen den Erreger gibt es bislang nicht, und die verfügbaren Medikamente haben teils extreme Nebenwirkungen. Bessere Mittel gegen die Krankheit sind also dringend nötig. Daran arbeiten Pharmazeuten, Mediziner und Biologen der Universität Würzburg. Und das mit Erfolg: Im „Journal of Medicinal Chemistry“ stellen die Wissenschaftler einen potenten neuen Wirkstoff gegen Trypanosoma vor.

Chinolonamid stört Zellteilung der Parasiten

Der neue Wirkstoff ist ein Molekül aus der Klasse der Chinolonamide. Würzburger Pharmazeuten haben ihn entwickelt; in Zellkulturen tötet er die Erreger der Schlafkrankheit zuverlässig ab – und das schon in geringen Konzentrationen.
Wie das Chinolonamid den Parasiten zusetzt? Analysen am Biozentrum haben gezeigt, dass der Wirkstoff mit dem so genannten Kinetoplasten in Wechselwirkung tritt. Dabei handelt es sich um eine Struktur, die es nur in Trypanosomen gibt. „Ohne den Kinetoplasten kommen die Zellteilung und damit die Vermehrung der Krankheitserreger ins Stocken“, sagt Nicola Jones vom Biozentrum.

Ziel: Den Wirkstoff wasserlöslich machen

Als nächstes muss am Tiermodell geklärt werden, ob der neue Wirkstoff auch in einem infizierten Organismus greift. Doch vorher gibt es noch ein Problem aus dem Weg zu räumen: Das Chinolonamid ist nur schlecht in Wasser löslich. „Darum lässt es sich kaum als Arznei aufbereiten; zudem wird es nicht gut genug ins Blut aufgenommen“, erklärt Georg Hiltensperger aus der Pharmazeutischen Chemie.

Die Bioverfügbarkeit des Wirkstoffs muss also noch verbessert werden. Um das zu erreichen, verfolgen die Forscher zwei Strategien. Zum einen testen sie, ob Veränderungen an der chemischen Struktur das Chinolonamid wasserlöslicher machen, ohne dass es an Wirksamkeit verliert. Zum anderen versuchen sie, den Wirkstoff pharmazeutisch-technisch so gut zu verpacken, dass er nach einer oralen Verabreichung in ausreichender Menge ins Blut übergeht.

An der Forschung beteiligte Gruppen

An dieser Arbeit sind von der Universität Würzburg Forschungsgruppen der Professoren Ulrike Holzgrabe und Lorenz Meinel (Pharmazie), Markus Engstler (Biologie) und Holger Braunschweig (Chemie) beteiligt. Auch der Tropenmediziner August Stich vom Würzburger Missionsärztlichen Institut und der Baseler Wissenschaftler Marcel Kaiser wirken daran mit.

Erarbeitet wurden die Ergebnisse im Sonderforschungsbereich SFB 630 (Erkennung, Gewinnung und funktionale Analyse von Wirkstoffen gegen Infektionskrankheiten) der Universität Würzburg. Der SFB wird von der Deutschen Forschungsgemeinschaft finanziell gefördert.

„Synthesis and Structure-Activity Relationships of New Quinolone-Type Molecules against Trypanosoma brucei”, Georg Hiltensperger, Nicola G. Jones, Sabine Niedermeier, August Stich, Marcel Kaiser, Jamin Jung, Sebastian Puhl, Alexander Damme, Holger Braunschweig, Lorenz Meinel, Markus Engstler, and Ulrike Holzgrabe. Journal of Medicinal Chemistry, 1. März 2012, 55 (6), pp 2538–2548, DOI: 10.1021/jm101439s

Kontakt

Prof. Dr. Ulrike Holzgrabe, Lehrstuhl für Pharmazeutische Chemie der Universität Würzburg, T (0931) 31-85461, holzgrab@pharmazie.uni-wuerzburg.de

Prof. Dr. Markus Engstler, Lehrstuhl für Zoologie I (Zell- und Entwicklungsbiologie), Biozentrum der Universität Würzburg, T (0931) 31-80060, markus.engstler@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie