Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer molekularer Mechanismus zur Steuerung plastischer Phasen in der Hirnentwicklung entdeckt

12.06.2015

Göttinger Forscher des SFB 889 finden neuartigen Mechanismus, um Zeitfenster mit hoher Lernfähigkeit des Gehirns zu regulieren: Ein zentraler Koordinator aus der Postsynapse steuert die Dauer kritischer Phasen in der Hirnentwicklung. Veröffentlicht in der renommierten amerikanischen Fachzeitschrift Proceedings of the National Academy of Sciences USA (PNAS).

Sehen oder Hören können – das gelingt nur, wenn auch das Gehirn „sehen“ oder „hören“ gelernt hat. Dies muss in bestimmten Zeitfenstern erhöhter Lernfähigkeit (Plastizität), sogenannten „kritischen Phasen“, der Hirnentwicklung passieren.


Neuronale Plastizität bei Mäusen mit normaler Expression von PSD-95 (Wildtyp) und erwachsenen Mäusen mit herunterregulierter Expression von PSD-95 (PSD-95 knock down, rechts).

umg_pug

Wie genau diese kritischen Phasen reguliert werden und welche Faktoren zu ihrer Beendigung führen, ist nicht nur von großer Bedeutung für die Grundlagenforschung. Neue Erkenntnisse können möglicherweise langfristig auch zur Entwicklung neuer klinisch relevanter Therapieansätze beitragen.

Die Arbeitsgruppen von Prof. Dr. Siegrid Löwel, Abteilung Systemische Neurobiologie am Institut für Zoologie und Anthropologie der Universität Göttingen, und Dr. Dr. Oliver Schlüter, Arbeitsgruppe Molekulare Neurobiologie am European Neuroscience Institute Göttingen (ENI-G), haben jetzt einen neuartigen Mechanismus zur Regulation von „kritischen Phasen“ der Hirnentwicklung entdeckt.

Sie fanden heraus, wie die Reifung von Nervenzellverbindungen und das Schließen der kritischen Phase für eine bestimmte Form der Anpassungsfähigkeit neuronaler Schaltkreise in der Sehrinde (Plastizität) gesteuert wird.

Bisher ging die Forschung davon aus, dass kritische Phasen über die Entwicklung lokaler Hemmung und die Expression sogenannter Plastizitäts„bremsen“ beendet wer-den. Die Ergebnisse der Göttinger Forscher zeigen nun, dass ein einziges Protein ausreicht, um die Dauer kritischer Phasen zu regulieren, und dass dies unabhängig von veränderter Hemmung passiert. Bei dem Protein handelt es sich um die post-synaptische Dichte 95 (PSD-95). PSD-95 ist dafür verantwortlich, Signalprozesse zu koordinieren.

Bei vergleichenden Untersuchungen zeigen Mäuse ohne PSD-95, sogenannte Knock-out Mäuse für PSD-95, eine lebenslange Lernfähigkeit (Plastizität) in der Sehrinde, wie sie sonst nur bei jungen Wildtypmäusen während der kritischen Phase beobachtet wird. Die Erkenntnisse wurden in enger Kooperation der Arbeitsgruppen von Prof. Dr. Siegrid Löwel und Dr. Dr. Oliver Schlüter im Rahmen des Sonderforschungsbereichs „Zelluläre Mechanismen sensorischer Verarbeitung“ (SFB 889) gewonnen. Die Forschungsergebnisse sind veröffentlicht in der renommierten amerikanischen Fachzeitschrift PNAS.

Originalpublikation: Huang, X.*, Stodieck, S.K.*, Goetze, B., Schmidt, K.-F., Cui, L., Wenzel, C., Hosang, L., Dong, Y., Löwel, S.* und Schlüter, O.M.* (2015) The Progres-sive Maturation of Silent Synapses Governs the Duration of a Critical Period. Proc. Natl. Acad. Sci. U.S.A. 2015 May 26. pii: 201506488. [Epub ahead of print]. *gleicher Beitrag.

WAS MACHT PSD-95 GENAU?

Das Protein PSD-95 ist notwendig, um die Kontaktstellen zwischen Nervenzellen (Synapsen) reifen zu lassen. „Ohne PSD-95 bleibt die Hälfte aller Synapsen in der Sehrinde lebenslang „still“. Solche „stillen Synapsen“ enthalten nur NMDA-Rezeptoren, die unter normalen Bedingungen nicht aktiviert werden. Sie können keine elektrische Erregung an der nachfolgenden Zelle auslösen – und damit auch keine Information weiterleiten“, sagt Dr. Dr. Oliver Schlüter. „Normalerweise werden mit der Synapsenreifung sogenannte AMPA-Rezeptoren in die Postsynapse eingebaut. Für diesen Schritt ist PSD-95 notwendig.“ Die „gereiften“ Synapsen sind nicht mehr still, sondern leiten Signale von einer zur nächsten Nervenzelle weiter.

“Wir konnten zudem nachweisen, dass PSD-95 nicht nur für die Reifung junger Synapsen, sondern auch für die Stabilisierung reifer Synapsen nötig ist: Wird bei bereits ausgereiften Schaltkreisen, nach Beendigung der kritischen Phase, die Expression des PSD-95 herunterreguliert (knock-down), stellt sich der „junge“ Synapsenzustand und die jugendliche Plastizität wieder her“, sagt Prof. Dr. Siegrid Löwel.

SFB 889: ERFOLG DURCH KOMBINIERTE EXPERTISE

Um überhaupt zu diesen neuen Forschungserkenntnissen über die „kritischen Phasen“ der Hirnentwicklung zu kommen, mussten die Forscher im SFB 889 unterschiedliche Techniken zusammenbringen: Die verwendeten Methoden reichen von der Manipulation der Expression einzelner Moleküle über patch-clamp Untersuchungen in Hirnschnitten und biochemischen Analysen bis zu optischen Ableitungen neuronaler Aktivität in der Hirnrinde und Verhaltensuntersuchungen der Sehleistungen der genmanipulierten Mäuse. Nur durch die kombinierte Expertise und intensive Zusammenarbeit der beiden Göttinger Labore von Prof. Dr. Siegrid Löwel und Dr. Dr. Oliver Schlüter war es möglich geworden, alle nötigen Experimente für eine solch umfassende Analyse durchzuführen. „Diese Zusammenarbeit ist ein Paradebeispiel dafür, was ein SFB optimalerweise bewirken kann“, sagt Prof. Dr. Tobias Moser, Sprecher des SFB 889. „Durch das Zusammenführen von Arbeitsgruppen unterschiedlicher Expertise, die gemeinsam an einem neuen Thema arbeiten, lässt sich mehr erreichen als jede Gruppe für sich allein in der Lage gewesen wäre.“

HINTERGRUNDINFORMATIONEN

Nervennetzwerke der Hirnrinde bilden sich zunächst hauptsächlich unter genetischer Kontrolle, benötigen dann aber Erfahrung und Training, um ihre funktionellen und strukturellen Eigenschaften zu formen und ihre Fähigkeiten zu optimieren. Es wird angenommen, dass es sich bei dieser erfahrungsabhängigen Optimierung um einen generellen Entwicklungsprozess handelt, der für alle funktionellen Bereiche der Hirnrinde gilt und seinen Höhepunkt typischerweise während bestimmter Zeitfenster, sogenannter „kritischer Phasen“ der Entwicklung, hat: Junge Gehirne während dieser Phasen sind im Allgemeinen wesentlich „plastischer“, also lernfähiger, als ältere Gehirne. Bekannte Beispiele für solche kritischen Phasen sind: die Nachlaufprägung und das Gesangslernen bei Vögeln; der Erwerb kognitiver Funktionen wie linguistische und musikalische Fähigkeiten beim Menschen; sowie die verschiedenen Merkmale sensorischer Modalitäten. Charakteristisches Merkmal kritischer Phasen ist, dass eine bestimmte Erfahrung in einem begrenzten Zeitfenster gemacht werden muss, damit sich das neuronale Netzwerk und seine Leistungsfähigkeit optimal entwickeln kann. Das Fehlen bestimmter sensorischer Reize in diesen Zeitfenstern, z.B. von visuellen Reizen (durch eine trübe Linse oder ein hängendes Augenlid) während der Entwicklung der Sehrinde, also desjenigen Teils der Hirnrinde, der Sehreize verarbeitet, kann zu irreversiblen Beeinträchtigungen der Sehleistungen im späteren Leben führen.

SFB 889 „ZELLULÄRE MECHANISMEN SENSORISCHER VERARBEITUNG“

Der Sonderforschungsbereich „Zelluläre Mechanismen sensorischer Verarbeitung“ (SFB 889) will die wichtigsten menschlichen Sinne „Sehen, Hören, Riechen, Tasten“ besser verstehen. Die Forschung des SFB 889 wird seit 2011 von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Sprecher des Sonderforschungsbereichs ist Prof. Dr. Tobias Moser, Direktor des Instituts für Auditorische Neurowissenschaften der Universitätsmedizin Göttingen (UMG). Wissenschaftler aus 23 Arbeitsgruppen aus den verschiedenen Bereichen der Neurowissenschaften am Standort Göttingen arbeiten in 21 Projekten zusammen. Beteiligt sind Forscher aus sechs Kliniken und Instituten der Universitätsmedizin Göttingen, aus dem Europäischen Neurowissenschaftlichen Institut (ENI-G), der Biologischen Fakultät der Universität Göttingen, aus dem Max-Planck-Institut für biophysikalische Chemie, dem Max-Planck-Institut für experimentelle Medizin sowie dem Max-Planck-Institut für Dynamik und Selbstorganisation sowie dem Deutschen Primatenzentrum.

BILDUNTERSCHRIFT/LEGENDE: Wird bei erwachsenen Mäusen die Expression von PSD-95 in der Sehrinde herunterreguliert (PSD-95 knock-down, rechts), zeigen die Tiere wieder eine jugendliche Plastizität, also Anpassungsfähigkeit, in ihrer Sehrinde. Diese neuronale Plastizität lässt sich mit modernen bildgebenden Verfahren sichtbar machen: Nach spezifischer Reizung eines Auges (ipsi, weißer Punkt) aktiviert dieses die Sehrinde genauso gut (dunkelgrau) wie das vorher stärkere Auge (contra, schwarzer Punkt); zudem ändern sich die Farben in der Karte von warmen (gelb-orange) zu kalten (blau-grün) Farben. Bei Mäusen mit normaler Expression von PSD-95 (Wildtyp, links) gibt es diese Änderung in der Aktivierung der Sehrinde nicht. Abbildung modifiziert aus Huang et al. (2015) PNAS, published ahead of print May 26, 2015, doi:10.1073/pnas.1506488112.

WEITERE INFORMATIONEN:
Georg-August-Universität Göttingen
Fakultät für Biologie und Psychologie
Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie
Abteilung Systemische Neurobiologie
Prof. Dr. Siegrid Löwel
Telefon 0551/39-20161/-20160
sloewel@gwdg.de, Internet: http://systemsneuroscience.uni-goettingen.de/

European Neuroscience Institute Göttingen (ENI-G)
Molecular Neurobiology
Dr. Dr. Oliver M. Schlüter
Telefon 0551/39-10374
oschlue@gwdg.de, Internet: http://www.eni.gwdg.de/index.php?id=101

Stefan Weller | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics