Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mikroorganismus "Nitrososphaera viennensis" isoliert

26.04.2011
Mikroorganismen spielen eine unverzichtbare Rolle in den großen Stoffkreisläufen. Einem Forschungsteam um Christa Schleper, Leiterin des Departments für Ökogenetik der Universität Wien, gelang es, das erste ammoniumoxidierende Archaeon aus Wiener Böden in Reinkultur zu isolieren und seine Aktivität nachzuweisen.

Die WissenschafterInnen präsentieren in der aktuellen Ausgabe des renommierten Fachjournals PNAS ihre Ergebnisse zu "Nitrososphaera viennensis" – dem "sphärischen Ammoniumoxidierer aus Wien".

Ohne die Stoffwechselleistungen der kleinsten aller Lebewesen, der Bakterien und Archaea, wäre ein Leben auf der Erde nicht möglich. Diese Mikroorganismen spielen eine zentrale Rolle in den großen Stoffkreisläufen, indem sie organische Materie zersetzen und die erhaltenen Grundbausteine in die Atmosphäre zurückführen oder für neues Leben verfügbar machen. "Doch erst seitdem molekularbiologische Methoden eingesetzt werden, wissen wir, dass eine enorme Zahl und Vielfalt von Bakterien und Archaea in Böden vorzufinden ist", sagt Christa Schleper, Leiterin des Departments für Ökogenetik der Universität Wien.

Mithilfe solcher molekularer Methoden haben MitarbeiterInnen, die heute am Department für Ökogenetik der Universität Wien tätig sind, vor sechs Jahren Archaea in großer Zahl in Böden vorhergesagt. Seither wurde vermutet, dass diese einen wichtigen Beitrag zum Stickstoffkreislauf liefern in Form der Oxidation von Ammonium zu Nitrit.

Aus dem Garten des Universitätszentrums Althanstraße

Nunmehr gelang den ForscherInnen um Christa Schleper, das erste ammoniumoxidierende Archaeon aus Böden in Reinkultur zu isolieren und seine Aktivität direkt nachzuweisen. Es stammt aus dem Garten des Universitätszentrums Althanstraße im 9. Wiener Gemeindebezirk und trägt aufgrund seiner Form und Herkunft den Namen "Nitrososphaera viennensis", der "sphärische Ammoniumoxidierer aus Wien". Eine einzelne Zelle weist einen Durchmesser von nur 0,8 Mikrometern auf, somit 0,8 Millionstel Meter.

Ursprünglicher Organismus?

Die meisten Archaea leben an extremen Standorten, etwa vulkanischen Quellen. Sie werden daher in Fachkreisen häufig als urzeitliche mikrobielle Lebensformen angesehen. "Auch 'Nitrososphaera viennensis' mag ein ursprünglicher Organismus sein. Denn anders als seine bakteriellen Gegenstücke, die sich besonders gut in gedüngten Ackerböden vermehren, bevorzugt er nährstoffarme Medien, die eher einer Umgebung in unberührten Böden entsprechen", so Schleper.

Forschungsergebnisse dank NanoSIMS

Im Gegensatz zu bakteriellen Ammoniumoxidierern benötigt "Nitrososphaera viennensis" neben Ammonium und Kohlendioxid zusätzlich geringe Mengen organischer Kohlenstoffquellen zum Wachstum. Dies wiesen die WissenschafterInnen mithilfe des hochmodernen Messgeräts NanoSIMS nach. Dabei handelt es sich um ein Sekundärionenmassenspektrometer mit einer Auflösung im Nanometerbereich. Das Instrument wurde erst vor kurzem durch das Department für mikrobielle Ökologie und mit Unterstützung mehrerer Fakultäten der Universität Wien angeschafft. Es wird von WissenschafterInnen der Fakultät für Lebenswissenschaften, der Fakultät für Geowissenschaften, Geographie und Astronomie, der Fakultät für Chemie sowie der Max. F. Perutz Laboratories genutzt.

Landwirtschaftliche Relevanz

"Nitrososphaera viennensis" ist der erste kultivierte Vertreter von archaealen Ammoniumoxidierern und damit ein Modellorganismus dieser ökolologisch wichtigen Gruppe von Mikroorganismen. Das Studium dieser Spezies ist auch von Interesse für die Landwirtschaft: "Ammoniumoxidation hat einen großen Einfluss auf die Verfügbarkeit von Stickstoff für Pflanzen und auf die Anreicherung von Nitrat in Gewässern", erklärt Schleper.

Die Forscherin sieht ein breites Feld für künftige Studien, etwa "Nitrososphaera viennensis" auf die Fähigkeit zu überprüfen, N2O (Lachgas) zu bilden. Dieses von anderen Ammoniumoxidierern in beachtlichen Mengen ausgeschiedene Nebenprodukt trägt zum Abbau der Ozonschicht bei und spielt damit eine Rolle für die Erderwärmung. "Da Organismen wie 'Nitrososphaera viennensis' weitverbreitet sind und bis zu 10 Millionen Zellen dieser Archaea in nur einem Gramm Boden zu finden sind, ist es wichtig, ihren Beitrag zu solchen Prozessen abschätzen zu können", so Schleper.

Publikation
Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil.
Maria Tourna, Michaela Stieglmeier, Anja Spang, Martin Könneke, Arno Schintlmeister, Tim Urich, Marion Engel, Michael Schloter, Michael Wagner, Andreas Richter und Christa Schleper. In: PNAS Online Early Edition, 25. April 2011

DOI: 10.1073/pnas.1013488108

Wissenschaftlicher Kontakt
Univ.-Prof. Dipl.-Biol. Dr. Christa Schleper
Leiterin des Departments für Ökogenetik
Universität Wien
1090 Wien, Althanstraße 14 (UZA I)
T +43-1-4277-578 00
M +43-664-602 77-578 00
christa.schleper@univie.ac.at
http://genetics-ecology.univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
M +43-664-602 77-175 31
alexander.dworzak@univie.ac.at

Alexander Dworzak | Universität Wien
Weitere Informationen:
http://medienportal.univie.ac.at/presse/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics