Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mechanismus der Meiose entdeckt

03.05.2013
Inaktiviert aber doch aktiv – wie die Veränderung eines Enzyms entscheidende Prozesse der sexuellen Reproduktion kontrolliert

Eine wichtige Entdeckung in der Meioseforschung ist der Arbeitsgruppe um die Molekularbiologin Andrea Pichler vom Freiburger Max-Planck-Institut für Immunbiologie und Epigenetik gelungen. Die Wissenschaftlerin hat mit ihrer Forschergruppe einen neuen Mechanismus identifiziert, der eine entscheidende Rolle in der Meiose spielt.


In Gegenwart des mit SUMO modifizierten Schritt-2-Enzyms bildet sich eine Proteinstruktur (Synaptonemaler Komplex) zwischen den homologen Chromosomen aus. Kann das Schritt-2-Enzym nicht mit SUMO modifiziert werden, fehlt der Komplex gänzlich. Martin Xaver, modifiziert von Andrea Pichler

Die Ausgangslage der Forschung

Die Meiose, auch Reduktionsteilung genannt, ist ein zentraler Vorgang der sexuellen Reproduktion. Dabei wird der Austausch des elterlichen Erbguts ermöglicht und die genetische Vielfalt gewährleistet.

Um verschiedene biologische Prozesse zu steuern, können Zellen gezielt die Eigenschaften ihrer Proteine verändern. Zum Beispiel deren Lebensdauer, Aktivität, den Reaktionspartner oder den Aufenthaltsort. Etwa indem sie ein oder mehrere kleine SUMO-Proteine anhängen. Dies geschieht in drei aufeinander folgenden enzymabhängigen Schritten. Beim Schritt-2-Enzym gingen Wissenschaftler davon aus, dass es sich um eine reine Durchgangsstation handelt.

Der Durchbruch

Wie die Freiburger Wissenschaftler nun herausfanden, wird das Schritt-2-Enzym selbst mit dem SUMO-Protein modifiziert und ändert dadurch seine Funktion. Der überraschende Effekt: Durch diese Änderung wird die herkömmliche Funktion des Enzyms ausgeschaltet, aber stattdessen eine neue hinzugewonnen. In Zusammenarbeit mit dem aktiven, unveränderten Enzym unterstützt es die Ausbildung von SUMO-Ketten. Wird dieser Effekt verhindert, hat dies gravierende Auswirkungen: Die Proteinstruktur (Synaptonemaler Komplex), die homologe Chromosomen in der Meiose miteinander verbindet, kann dann nicht mehr ausgebildet werden.

Die Erkenntnisse der Forscher

Geringste Mengen – weniger als ein Prozent – des SUMO modifizierten Schritt-2-Enzyms reichen aus, um eine normale Proteinstruktur wie auf dem linken Foto auszubilden. Forscherin Helene Klug aus dem Team um Pichler: „Kleinste Mengen des veränderten Enzyms genügen, um mit dem nicht modifizierten Enzym einen aktiven Komplex zu bilden, der dann die Meiose-abhängigen SUMO Modifikationen durchführt“.

„Anfangs widersprachen sich die Ergebnisse der biologischen und biochemischen Experimente komplett, obwohl die Daten absolut stichhaltig waren. Wir waren deshalb überzeugt, dass beide Beobachtungen richtig sind. Diesen Gegensatz zu erklären, hat uns dann zu dem neuen Mechanismus geführt“, so Studienleiterin Pichler. In aufwändigen biochemischen Experimenten konnten die Forscher außerdem erstmals enthüllen, wie dieser Enzymkomplex die Bildung von SUMO-Ketten ausführt.
Mit diesen neuen Erkenntnissen werden nach 50 Jahren Forschung um den Synaptonemalen Komplex die Weichen neu gestellt: „Erstmals können wir nun den Verlust des Synaptonemalen Komplexes nahezu nebenwirkungsfrei studieren und erhoffen uns, dessen Geheimnis auf die Spur zu kommen. Das erlaubt uns, die Konsequenzen für die Meiose und infolgedessen für die Keimzellentwicklung zu untersuchen“, sagen Franz Klein und Martin Xaver, Kooperationspartner und Meioseforscher der Max F. Perutz Laboratories, Wien.

Das Team um Pichler konnte bereits 2008 in Säugerzellen zeigen, dass die Selbst-Markierung des Schritt-2-Enzyms Einfluss darauf hat, welche Proteine überhaupt mit SUMO markiert werden. Um eine biologische Funktion für diese Regulationsform zu finden, wechselte das Forscherteam zu dem simpleren Organismus, der Bäckerhefe Saccharomyces cerevisiae. „Jetzt, wo wir wissen, wo wir suchen müssen, wollen wir auch wieder zurück ins Säugersystem, um die Rolle dieser Enzymregulation dort näher zu untersuchen“, sagt Pichler. „Außerdem wollen wir die Funktion des Hefe-Enzymkomplexes in der meiotischen Chromosomenstruktur besser verstehen.“
Am Max-Planck Institut für Immunbiologie und Epigenetik (MPI-IE) in Freiburg, das 1961 gegründet wurde, untersuchen Wissenschaftler, wie sich das Immunsystem im Laufe der Evolution entwickelt hat und wie es sich während des Lebens verändert. Im Jahr 2007 wurde der Schwerpunkt Epigenetik neu etabliert. Darin untersuchen Forscher die Vererbung von Eigenschaften, die nicht auf Veränderungen der DNA-Sequenz basieren.

Publikation:
Klug H, Xaver M, Chaugule V K, Koidl S, Mittler G, Klein F, and Pichler A: Ubc9 Sumoylation Controls SUMO Chain Formation and Meiotic Synapsis in Saccharomyces cerevisiae (2013). Molecular Cell, 2. Mai 2013 http://dx.doi.org/10.1016/j.molcel.2013.03.027

Kontakt:
Dr. Andrea Pichler
Max-Planck-Institut für Immunbiologie und Epigenetik
Stübeweg 51
79108 Freiburg
E-Mail pichler@ie-freiburg.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/
http://www.mpg.de/153825/immunbiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten