Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mechanismus der Meiose entdeckt

03.05.2013
Inaktiviert aber doch aktiv – wie die Veränderung eines Enzyms entscheidende Prozesse der sexuellen Reproduktion kontrolliert

Eine wichtige Entdeckung in der Meioseforschung ist der Arbeitsgruppe um die Molekularbiologin Andrea Pichler vom Freiburger Max-Planck-Institut für Immunbiologie und Epigenetik gelungen. Die Wissenschaftlerin hat mit ihrer Forschergruppe einen neuen Mechanismus identifiziert, der eine entscheidende Rolle in der Meiose spielt.


In Gegenwart des mit SUMO modifizierten Schritt-2-Enzyms bildet sich eine Proteinstruktur (Synaptonemaler Komplex) zwischen den homologen Chromosomen aus. Kann das Schritt-2-Enzym nicht mit SUMO modifiziert werden, fehlt der Komplex gänzlich. Martin Xaver, modifiziert von Andrea Pichler

Die Ausgangslage der Forschung

Die Meiose, auch Reduktionsteilung genannt, ist ein zentraler Vorgang der sexuellen Reproduktion. Dabei wird der Austausch des elterlichen Erbguts ermöglicht und die genetische Vielfalt gewährleistet.

Um verschiedene biologische Prozesse zu steuern, können Zellen gezielt die Eigenschaften ihrer Proteine verändern. Zum Beispiel deren Lebensdauer, Aktivität, den Reaktionspartner oder den Aufenthaltsort. Etwa indem sie ein oder mehrere kleine SUMO-Proteine anhängen. Dies geschieht in drei aufeinander folgenden enzymabhängigen Schritten. Beim Schritt-2-Enzym gingen Wissenschaftler davon aus, dass es sich um eine reine Durchgangsstation handelt.

Der Durchbruch

Wie die Freiburger Wissenschaftler nun herausfanden, wird das Schritt-2-Enzym selbst mit dem SUMO-Protein modifiziert und ändert dadurch seine Funktion. Der überraschende Effekt: Durch diese Änderung wird die herkömmliche Funktion des Enzyms ausgeschaltet, aber stattdessen eine neue hinzugewonnen. In Zusammenarbeit mit dem aktiven, unveränderten Enzym unterstützt es die Ausbildung von SUMO-Ketten. Wird dieser Effekt verhindert, hat dies gravierende Auswirkungen: Die Proteinstruktur (Synaptonemaler Komplex), die homologe Chromosomen in der Meiose miteinander verbindet, kann dann nicht mehr ausgebildet werden.

Die Erkenntnisse der Forscher

Geringste Mengen – weniger als ein Prozent – des SUMO modifizierten Schritt-2-Enzyms reichen aus, um eine normale Proteinstruktur wie auf dem linken Foto auszubilden. Forscherin Helene Klug aus dem Team um Pichler: „Kleinste Mengen des veränderten Enzyms genügen, um mit dem nicht modifizierten Enzym einen aktiven Komplex zu bilden, der dann die Meiose-abhängigen SUMO Modifikationen durchführt“.

„Anfangs widersprachen sich die Ergebnisse der biologischen und biochemischen Experimente komplett, obwohl die Daten absolut stichhaltig waren. Wir waren deshalb überzeugt, dass beide Beobachtungen richtig sind. Diesen Gegensatz zu erklären, hat uns dann zu dem neuen Mechanismus geführt“, so Studienleiterin Pichler. In aufwändigen biochemischen Experimenten konnten die Forscher außerdem erstmals enthüllen, wie dieser Enzymkomplex die Bildung von SUMO-Ketten ausführt.
Mit diesen neuen Erkenntnissen werden nach 50 Jahren Forschung um den Synaptonemalen Komplex die Weichen neu gestellt: „Erstmals können wir nun den Verlust des Synaptonemalen Komplexes nahezu nebenwirkungsfrei studieren und erhoffen uns, dessen Geheimnis auf die Spur zu kommen. Das erlaubt uns, die Konsequenzen für die Meiose und infolgedessen für die Keimzellentwicklung zu untersuchen“, sagen Franz Klein und Martin Xaver, Kooperationspartner und Meioseforscher der Max F. Perutz Laboratories, Wien.

Das Team um Pichler konnte bereits 2008 in Säugerzellen zeigen, dass die Selbst-Markierung des Schritt-2-Enzyms Einfluss darauf hat, welche Proteine überhaupt mit SUMO markiert werden. Um eine biologische Funktion für diese Regulationsform zu finden, wechselte das Forscherteam zu dem simpleren Organismus, der Bäckerhefe Saccharomyces cerevisiae. „Jetzt, wo wir wissen, wo wir suchen müssen, wollen wir auch wieder zurück ins Säugersystem, um die Rolle dieser Enzymregulation dort näher zu untersuchen“, sagt Pichler. „Außerdem wollen wir die Funktion des Hefe-Enzymkomplexes in der meiotischen Chromosomenstruktur besser verstehen.“
Am Max-Planck Institut für Immunbiologie und Epigenetik (MPI-IE) in Freiburg, das 1961 gegründet wurde, untersuchen Wissenschaftler, wie sich das Immunsystem im Laufe der Evolution entwickelt hat und wie es sich während des Lebens verändert. Im Jahr 2007 wurde der Schwerpunkt Epigenetik neu etabliert. Darin untersuchen Forscher die Vererbung von Eigenschaften, die nicht auf Veränderungen der DNA-Sequenz basieren.

Publikation:
Klug H, Xaver M, Chaugule V K, Koidl S, Mittler G, Klein F, and Pichler A: Ubc9 Sumoylation Controls SUMO Chain Formation and Meiotic Synapsis in Saccharomyces cerevisiae (2013). Molecular Cell, 2. Mai 2013 http://dx.doi.org/10.1016/j.molcel.2013.03.027

Kontakt:
Dr. Andrea Pichler
Max-Planck-Institut für Immunbiologie und Epigenetik
Stübeweg 51
79108 Freiburg
E-Mail pichler@ie-freiburg.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/
http://www.mpg.de/153825/immunbiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics