Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mechanismus beim Pflanzenwachstum entdeckt

02.03.2012
Wie Pflanzen wachsen, ist nicht nur in ihren Genen angelegt: Eine wichtige Rolle spielen auch die mechanischen Eigenschaften der Zellen. Berner Pflanzenwissenschaftler haben einen gänzlich neuen Mechanismus entdeckt, mit dem pflanzliche Stammzellen ihr Wachstum regulieren.

Stammzellen in Tieren und Pflanzen erfüllen eine zweifache Aufgabe: Bei der Zellteilung differenzieren sich ihre Tochterzellen entweder zu Geweben und Organen aus – oder sie bleiben selber Stammzellen. Wird dieser Prozess gestört, kommt es zu ungehemmtem Zellwachstum – Krebs – oder Zelltod. Die Forschung hat sowohl bei tierischen als auch pflanzlichen Stammzellen diejenigen Gene identifiziert, die darüber entscheiden, ob eine Zelle eine weitere Stammzelle produziert oder sich differenziert.


Rasterelektronische Aufnahme der Spitze eines Tomatensprosses. Die «Stammzellen-Nische» ist grün eingefärbt. Unterhalb der Spitze formt sich rechts ein junges Blatt. Bild: Institut für Pflanzenwissenschaft, Universität Bern.

Nun hat eine Forschergruppe unter der Leitung von Prof. Richard Smith vom Institut für Pflanzenwissenschaft der Universität Bern einen gänzlich neuen Mechanismus der Stammzellregulation bei Pflanzen entdeckt. Die Studie wird heute im Journal «Science» publiziert.

«Unelastische» Stammzellen

Anders als bei Tieren, wo die künftige Ausprägung des Körpers zum grössten Teil bereits im Embryo festgelegt ist, bilden Pflanzen ihre Form fortwährend aus, indem sie sorgfältig das Wachstum und die Organbildung an der Spitze ihrer Sprosse kontrollieren. Während die genetischen Aspekte dieses Prozesses gut bekannt sind, spielen bei der Ausprägung komplexer Formen wie zum Beispiel Blätter auch die mechanischen Eigenschaften der Zellen eine Rolle. Dies war bisher kaum erforscht.

Nun haben die Forschenden die elastischen Eigenschaften von Zellwänden an der Spitze eines Sprosses untersucht, indem sie diese unterschiedlichem zellinternen Druck aussetzten. Mittels einer speziellen Software massen sie die Änderungen der Zellformen und konnten nachverfolgen, wie verschiedene Stammzell-Regionen im Sprosstrieb auf diese Druckveränderungen reagieren und wachsen. Dabei fanden sie heraus, dass nicht alle Zellwände unter demselben Druck nachgeben: Die Wände von Stammzellen, die sich auf der Spitze eines Sprosses befinden, bewegten sich kaum – das heisst, diese Stammzellen können sich nicht differenzieren. Dies weil ihre Zellwände so beschaffen sind, dass sie sich nicht ausdehnen und wachsen können. Auch die Erhöhung des Zellinnendrucks änderte an dieser unelastischen «Stammzellen-Nische» nichts. Im Gegensatz dazu können sich Stammzellen direkt unterhalb dieser Spitze rasch vergrössern, indem sie ihre Wände lockern und am Spross Ausbuchtungen bilden, die zu vollständig ausgebildeten Blättern auswachsen.

Das heisst, dass nicht nur genetische Voraussetzungen, sondern mechanische Eigenschaften wie die unterschiedliche Elastizität der Zellwände bestimmen, an welcher Stelle sich die Stammzellen einer Pflanze differenzieren und damit das Wachstum regulieren. Ein solcher Mechanismus stabilisiert und schützt laut den Forschenden die wichtige Stammzellen-Nische vor unkontrolliertem Wachstum, etwa durch den störenden Einfluss von pflanzlichen Hormonen, die Zellwände lockern und somit Zellwachstum fördern.

Für die Studie arbeiteten Forschende aus diversen Fachbereichen zusammen – Biologie, Mathematik, Informatik und Physik. «Sie ist daher ein gutes Beispiel dafür, was wir unter Systembiologie verstehen», sagt Richard Smith.

Bibliographische Angaben:
Daniel Kierzkowski, Naomi Nakayama, Anne-Lise Routier-Kierzkowska, Alain Weber, Emmanuelle Bayer, Martine Schorderet, Didier Reinhardt, Cris Kuhlemeier, Richard S. Smith: Elastic domains re-gulate growth and organogenesis in the plant shoot apical meristem, Science, 335, 2012, in print

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Berichte zu: Ausprägung Pflanzenwachstum Prozess Spross Stammzelle Zellwachstum Zellwände

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Warum der Brennstoffzelle die Luft wegbleibt
28.03.2017 | Technische Universität Wien

nachricht Chlamydien: Wie Bakterien das Ruder übernehmen
28.03.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie

Wirbel als Räder der Natur

28.03.2017 | Architektur Bauwesen

Von der Bottnischen See bis ins Kattegat – Der Klimageschichte der Ostsee auf der Spur

28.03.2017 | Geowissenschaften