Neuer Hemmstoff blockiert Krebsprotein KRAS

Links: Fluoreszenz-Aufnahmen von KRAS in Zellen vor Behandlung mit dem Hemmstoff Deltarasin. KRAS befindet sich vor allem an der Plasmamembran. Rechts: Zellen nach Behandlung mit Deltarasin. Die Behandlung mit dem potenten Hemmstoff verringert die Konzentration von KRAS an der Zellmembran und verlagert das Protein an Membranen innerhalb der Zelle.<br><br>© MPI für molekulare Physiologie<br>

Eines der Hauptziele in der Entwicklung von anti-Krebsmedikamenten ist es, einen Hemmstoff gegen das Krebsprotein KRAS zu finden. Trotz jahrzehntelanger Wirkstoffforschung ist es bisher nicht gelungen, die krebsfördernde Wirkung dieses Proteins zu unterbinden. KRAS ist nur dann voll funktionstüchtig, wenn es in der Zellmembran verankert ist. Folglich ist die Lokalisation von KRAS in der Zelle eng mit der krebsfördernden Wirkung von KRAS verknüpft.

Forscher des Max-Planck-Instituts für molekulare Physiologie in Dortmund haben nun in einer neuen Studie herausgefunden, wie man den Transport von KRAS zur Zellmembran durch einen neuartigen Hemmstoff stören kann. Der Hemmstoff Deltarasin richtet sich nicht wie bisherige Ansätze gegen KRAS selbst, sondern gegen sein Transportprotein PDEδ. Diese Forschungsergebnisse eröffnen neue Ansätze in der Krebstherapie, insbesondere für die tödlichste aller Krebsarten, den Bauchspeicheldrüsenkrebs (Pankreaskarzinom), der oft erst in einem so späten Stadium auffällt, dass Therapien nicht mehr anschlagen können.

Das Protein KRAS ist ein molekularer Schalter, der im normalen Zustand Zellwachstum und Zellteilung reguliert. Mutationen in diesem Protein führen zu einem unregulierten, dauerhaft angeschalteten Zustand und letztendlich zu der Entstehung von Tumoren durch ständiges Zellwachstum. Da jeder dritte Tumor eine Mutation in einem der RAS-Proteine aufweist, stehen diese seit Jahrzenten im Fokus der Wirkstoffforschung. Dabei steht besonders das KRAS Protein im Mittelpunkt des Interesses. Mutierte KRAS-Proteine finden sich beispielsweise in einem Großteil aller Tumorzellen von Bauchspeicheldrüsenkrebs-Patienten. Bisher konnte jedoch kein Medikament gegen mutiertes, hyperaktives KRAS entwickelt werden, so dass die Heilungschancen bei Bauspeicheldrüsenkrebs weiterhin minimal sind.

Zur Medikamentenentwicklung gegen Krankheiten wie den höchst gefährlichen Bauchspeicheldrüsenkrebs wird häufig ein kleines, organisches Molekül benötigt, welches an die Oberfläche eines Proteins wie KRAS bindet. Besonders wichtig ist dabei die Passgenauigkeit des Moleküls für die Proteinoberfläche. Vergleichbar ist dieser Erkennungsprozess mit der Funktion eines Schlüssels für ein Schloss. Die pharmazeutische Industrie hat jahrezentelang unter hohem finanziellem Einsatz versucht, einen passenden, molekularen Schlüssel für KRAS zu finden, leider jedoch erfolglos.

Anstatt weiterhin nach einem Schlüssel für KRAS selbst zu suchen, gingen die Forscher des Max-Planck-Instituts einen anderen Weg. Für die neue Arbeit nutzten die Forscher ihr Wissen aus vorherigen Studien, in denen sie PDEδ als Transportprotein für KRAS identifiziert haben. Mittels modernster Hochdurchsatz-Technologie konnten die Forscher erste schwache Hemmstoffe gegen dieses Hilfsprotein PDEδ finden. Diese wurden nachfolgend durch Kooperation zwischen Chemikern und Strukturbiologen auf das Protein PDEδ maßgeschneidert.

Der effektivste Hemmstoff, Deltarasin genannt, wurde von Zellbiologen auf seine Wirksamkeit gegenüber der KRAS-Lokalisierung in lebenden, menschlichen Zellen getestet. Sie konnten nachweisen, dass sich KRAS nicht mehr an der Plasmamembran aufhält, sondern überall in der Zelle verteilt. Nachfolgend untersuchten sie das Wachstum von Tumorzellen für die KRAS-Mutationen überlebenswichtig sind im Vergleich zu Kontrollzellen. Nach Behandlung der Zellen mit dem Hemmstoff konnten sie ein Zellsterben bei den sogenannten KRAS-abhängigen Tumorzellen sehen, während Kontroll-Zellen ohne KRAS Mutation weiter wuchsen.

Zum Abschluss der Studie wurde der Hemmstoff Deltarasin in Mäusen getestet, welche vorher menschliche Tumorzellen mit KRAS-Mutationen gespritzt bekommen haben. Auch hier bewirkte der Hemmstoff Deltarasin ein stark reduziertes Tumorwachstum im Vergleich zu einem Placebo.

Der optimierte Hemmstoff Deltarasin ist folglich ein Meilenstein auf dem Gebiet der Wirkstoffforschung und schon jetzt eine Inspiration für viele Pharmafirmen, die an KRAS mutierten Tumoren arbeiten.

Ansprechpartner

Björn Papke
Max-Planck-Institut für molekulare Physiologie, Dortmund
E-Mail: bjoern.papke@­mpi-dortmund.mpg.de
Dr. Peter Herter
Max-Planck-Institut für molekulare Physiologie, Dortmund
Telefon: +49 231 133-2500
Fax: +49 231 133-2599
E-Mail: peter.herter@­mpi-dortmund.mpg.de
Originalpublikation
Zimmermann, G., Papke, B., Ismail, S., Vartak, N., Chandra, A., Hoffmann, M., Hahn, S. A., Triola, G., Wittinghofer, A., Bastiaens, P. I. H., et al. (2013).
Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling.

Nature. 2013 May 30;497(7451):638-42. doi: 10.1038/nature12205. Epub 2013 May 22.

Media Contact

Björn Papke Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer