Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Hemmstoff blockiert Krebsprotein KRAS

31.07.2013
Deltarasin verhindert den Transport des Krebsproteins KRAS zur Zellmembran

Eines der Hauptziele in der Entwicklung von anti-Krebsmedikamenten ist es, einen Hemmstoff gegen das Krebsprotein KRAS zu finden. Trotz jahrzehntelanger Wirkstoffforschung ist es bisher nicht gelungen, die krebsfördernde Wirkung dieses Proteins zu unterbinden. KRAS ist nur dann voll funktionstüchtig, wenn es in der Zellmembran verankert ist. Folglich ist die Lokalisation von KRAS in der Zelle eng mit der krebsfördernden Wirkung von KRAS verknüpft.


Links: Fluoreszenz-Aufnahmen von KRAS in Zellen vor Behandlung mit dem Hemmstoff Deltarasin. KRAS befindet sich vor allem an der Plasmamembran. Rechts: Zellen nach Behandlung mit Deltarasin. Die Behandlung mit dem potenten Hemmstoff verringert die Konzentration von KRAS an der Zellmembran und verlagert das Protein an Membranen innerhalb der Zelle.

© MPI für molekulare Physiologie


Das Transportprotein PDEδ mit einem Stabmodell des Hemmstoffs Deltarasin.

© MPI für molekulare Physiologie

Forscher des Max-Planck-Instituts für molekulare Physiologie in Dortmund haben nun in einer neuen Studie herausgefunden, wie man den Transport von KRAS zur Zellmembran durch einen neuartigen Hemmstoff stören kann. Der Hemmstoff Deltarasin richtet sich nicht wie bisherige Ansätze gegen KRAS selbst, sondern gegen sein Transportprotein PDEδ. Diese Forschungsergebnisse eröffnen neue Ansätze in der Krebstherapie, insbesondere für die tödlichste aller Krebsarten, den Bauchspeicheldrüsenkrebs (Pankreaskarzinom), der oft erst in einem so späten Stadium auffällt, dass Therapien nicht mehr anschlagen können.

Das Protein KRAS ist ein molekularer Schalter, der im normalen Zustand Zellwachstum und Zellteilung reguliert. Mutationen in diesem Protein führen zu einem unregulierten, dauerhaft angeschalteten Zustand und letztendlich zu der Entstehung von Tumoren durch ständiges Zellwachstum. Da jeder dritte Tumor eine Mutation in einem der RAS-Proteine aufweist, stehen diese seit Jahrzenten im Fokus der Wirkstoffforschung. Dabei steht besonders das KRAS Protein im Mittelpunkt des Interesses. Mutierte KRAS-Proteine finden sich beispielsweise in einem Großteil aller Tumorzellen von Bauchspeicheldrüsenkrebs-Patienten. Bisher konnte jedoch kein Medikament gegen mutiertes, hyperaktives KRAS entwickelt werden, so dass die Heilungschancen bei Bauspeicheldrüsenkrebs weiterhin minimal sind.

Zur Medikamentenentwicklung gegen Krankheiten wie den höchst gefährlichen Bauchspeicheldrüsenkrebs wird häufig ein kleines, organisches Molekül benötigt, welches an die Oberfläche eines Proteins wie KRAS bindet. Besonders wichtig ist dabei die Passgenauigkeit des Moleküls für die Proteinoberfläche. Vergleichbar ist dieser Erkennungsprozess mit der Funktion eines Schlüssels für ein Schloss. Die pharmazeutische Industrie hat jahrezentelang unter hohem finanziellem Einsatz versucht, einen passenden, molekularen Schlüssel für KRAS zu finden, leider jedoch erfolglos.

Anstatt weiterhin nach einem Schlüssel für KRAS selbst zu suchen, gingen die Forscher des Max-Planck-Instituts einen anderen Weg. Für die neue Arbeit nutzten die Forscher ihr Wissen aus vorherigen Studien, in denen sie PDEδ als Transportprotein für KRAS identifiziert haben. Mittels modernster Hochdurchsatz-Technologie konnten die Forscher erste schwache Hemmstoffe gegen dieses Hilfsprotein PDEδ finden. Diese wurden nachfolgend durch Kooperation zwischen Chemikern und Strukturbiologen auf das Protein PDEδ maßgeschneidert.

Der effektivste Hemmstoff, Deltarasin genannt, wurde von Zellbiologen auf seine Wirksamkeit gegenüber der KRAS-Lokalisierung in lebenden, menschlichen Zellen getestet. Sie konnten nachweisen, dass sich KRAS nicht mehr an der Plasmamembran aufhält, sondern überall in der Zelle verteilt. Nachfolgend untersuchten sie das Wachstum von Tumorzellen für die KRAS-Mutationen überlebenswichtig sind im Vergleich zu Kontrollzellen. Nach Behandlung der Zellen mit dem Hemmstoff konnten sie ein Zellsterben bei den sogenannten KRAS-abhängigen Tumorzellen sehen, während Kontroll-Zellen ohne KRAS Mutation weiter wuchsen.

Zum Abschluss der Studie wurde der Hemmstoff Deltarasin in Mäusen getestet, welche vorher menschliche Tumorzellen mit KRAS-Mutationen gespritzt bekommen haben. Auch hier bewirkte der Hemmstoff Deltarasin ein stark reduziertes Tumorwachstum im Vergleich zu einem Placebo.

Der optimierte Hemmstoff Deltarasin ist folglich ein Meilenstein auf dem Gebiet der Wirkstoffforschung und schon jetzt eine Inspiration für viele Pharmafirmen, die an KRAS mutierten Tumoren arbeiten.

Ansprechpartner

Björn Papke
Max-Planck-Institut für molekulare Physiologie, Dortmund
E-Mail: bjoern.papke@­mpi-dortmund.mpg.de
Dr. Peter Herter
Max-Planck-Institut für molekulare Physiologie, Dortmund
Telefon: +49 231 133-2500
Fax: +49 231 133-2599
E-Mail: peter.herter@­mpi-dortmund.mpg.de
Originalpublikation
Zimmermann, G., Papke, B., Ismail, S., Vartak, N., Chandra, A., Hoffmann, M., Hahn, S. A., Triola, G., Wittinghofer, A., Bastiaens, P. I. H., et al. (2013).
Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling.

Nature. 2013 May 30;497(7451):638-42. doi: 10.1038/nature12205. Epub 2013 May 22.

Björn Papke | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7480816/Hemmstoff-Krebsprotein-KRAS

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE