Neuer Fluoreszenzmarker macht Grenzen von Hirntumoren sichtbar

Forscher am Max-Planck-Institut für biophysikalische Chemie haben jetzt in Zusammenarbeit mit Medizinern der Universitätsmedizin Göttingen eine neue Fluoreszenzsonde entwickelt, die sich bei vielen Formen von Gliomen anwenden lässt. Der Marker macht einzelne Krebszellen im Mikroskop sichtbar und könnte Chirurgen zukünftig während Operationen das Auffinden von Tumorgrenzen erleichtern.

Bei der Diagnose eines Glioms der aggressiven Tumorgrade III und IV ist die Prognose für Betroffene äußerst schlecht. Die Erkrankten überleben nach Diagnose oft nur noch wenige Monate. Aggressive Gliome können völlig neu entstehen, entwickeln sich aber auch aus weniger malignen Stadien. Solche weniger bösartigen Tumoren nachzuweisen, ist allerdings äußerst schwierig. Mit bildgebenden Verfahren wie der Computertomografie und der Magnetresonanztomografie (MRT) lassen sich zwar viele Krebsgeschwüre hoher Tumorgrade deutlich erkennen, nicht aber die genaue Ausdehnung und Wachstumsform der weniger bösartigen Formen.

Forschern am Max-Planck-Institut für biophysikalische Chemie in Göttingen ist es jetzt gelungen, einen Fluoreszenzmarker zu entwickeln, der sich zum Nachweis der Mehrheit der Gliome gleichermaßen gut eignet. „Wir machen uns dabei zunutze, dass in vielen Gliomen sogenannte Epidermale Wachstumsfaktor (EGF)-Rezeptoren vermehrt auftreten“, erklärt die Zellbiologin Donna Arndt-Jovin. Um die Krebszellen sichtbar zu machen, koppelte das Wissenschaftlerteam um Arndt-Jovin hell fluoreszierende Halbleiter-Nanopartikel (Quantum Dots) an Antikörper gegen den EGF-Rezeptor oder den Wachstumsfakor selbst. Die Technik erlaubt höchste räumliche Auflösung: Dank des 1000-fach stärkeren Fluoreszenzsignals im Vergleich zu normalen Zellen werden damit einzelne Krebszellen im Gewebe sichtbar. Anders als viele Fluoreszenzmarker sind Quantum Dots äußerst photostabil und bleichen dabei nicht aus.

Dass der Fluoreszenzmarker an lebendem Biopsie-Material funktioniert, konnten die Max-Planck-Wissenschafter in Zusammenarbeit mit den Medizinern Sven Kantelhardt und Alf Giese der Abteilung Neurochirurgie der Universitätsmedizin Göttingen zeigen. Färbten die Wissenschaftler lebendes Tumorgewebe mit der neuen Fluoreszenzsonde, ließen sich unter dem Mikroskop Krebszellen niedriger wie hoher Tumorgrade als hell leuchtende Punkte deutlich erkennen. Normale Gehirnzellen nehmen die Quantum Dots dagegen kaum auf und bleiben dunkel. Gerade die Darstellung von Tumorzellen niedriger Tumorgrade war bislang mit anderen Verfahren, die Aussicht auf einen Einsatz im Operationssaal haben, kaum möglich. Gefördert wurde das Projekt der Wissenschaftler von der „Head and Neck Cancer Research Foundation“, der „Novartis Foundation for Therapeutical Research“ und der EU im Rahmen des von Donna Arndt-Jovin koordinierten FP6-FLUOROMAG-Projekts.

Resttumorzellen aufspüren

Neurochirurgen sehen für den Fluoreszenzmarker einen möglichen praktischen Einsatz während der Operation hochgradig bösartiger Tumoren. „Nach konventionellem Entfernen des Tumors könnte das Gewebe in der Umgebung mithilfe der Fluoreszenzsonde direkt nach Resttumorzellen abgesucht und Areale hoher Tumorzelldichte dann entfernt werden“, sagt der Neurochirurg Alf Giese. Da sich im Gehirn verbleibende Krebszellen zu neuen, häufig noch bösartigeren Geschwüren entwickeln, ließen sich die Überlebenschancen der Erkrankten durch eine vollständigere Entfernung beträchtlich steigern. Ein neuartiges Hochgeschwindigkeits-Fluoreszenzmikroskop (Programmable Array Microscope, PAM), das vom Forscherteam um Thomas Jovin und Donna Arndt-Jovin am Max-Planck-Institut für biophysikalische Chemie derzeit zur Produktionsreife gebracht wird, könnte dabei wertvolle Dienste leisten. Es ermöglicht, mit Quantum Dots markierte Moleküle an lebenden Zellen mit einer hohen räumlichen, zeitlichen und spektralen Auflösung zu untersuchen. Ein weiteres wichtiges Ziel der Göttinger Wissenschaftler ist es, Nanopartikel auch als Werkzeug für die Krebstherapie nutzbar zu machen: als Wirkstoff-Transporter, die gezielt Wirkstoffe in die Tumorzelle einschleusen, die diese zerstören.

Originalveröffentlichung:
Sven R. Kantelhardt, Wouter Caarls, Anthony H.B. de Vries, Guy M. Hagen, Thomas M. Jovin, Walter Schulz-Schaeffer, Veit Rohde, Alf Giese, Donna J. Arndt-Jovin. Specific visualization of glioma cells in living low-grade tumor tissue. PLoS ONE, 10.1371/journal.pone.0011323, 30. Juni 2010.
Kontakt:
Dr. Donna Arndt-Jovin, Labor für Zelluläre Dynamik
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1393/-1401
E-Mail: djovin@gwdg.de
PD Dr. med. Sven Kantelhardt und Prof. Dr. med. Alf Giese
Abteilung Neurochirurgie, Direktor Prof. Dr. med. Veit Rohde
Universitätsmedizin Göttingen
Tel.: +49 551 39-6036
E-Mail: alf.giese@med.uni-goettingen.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1304
E-Mail: crotte@gwdg.de
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/jovin/index.php/Main/HomePage – Labor für Zelluläre Dynamik, Max-Planck-Institut für biophysikalische Chemie

http://www.nchi.med.uni-goettingen.de/allg.html – Abteilung Neurochirurgie, Universitätsmedizin Göttingen

Media Contact

Dr. Carmen Rotte Max-Planck-Institut

Weitere Informationen:

http://www.mpibpc.mpg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer